IDEAS home Printed from https://ideas.repec.org/p/fip/fednsr/619.html
   My bibliography  Save this paper

Time-Varying Structural Vector Autoregressions and Monetary Policy: a Corrigendum

Author

Listed:
  • Marco Del Negro
  • Giorgio E. Primiceri

    (Northwestern University
    Princeton University
    National Bureau of Economic Research
    Centre for Economic Policy Research (CEPR))

Abstract

This note corrects a mistake in the estimation algorithm of the time-varying structural vector autoregression model of Primiceri (2005) and shows how to correctly apply the procedure of Kim, Shephard, and Chib (1998) to the estimation of VAR, DSGE, factor, and unobserved components models with stochastic volatility. Relative to Primiceri (2005), the main difference in the new algorithm is the ordering of the various Markov Chain Monte Carlo steps, with each individual step remaining the same.

Suggested Citation

  • Marco Del Negro & Giorgio E. Primiceri, 2013. "Time-Varying Structural Vector Autoregressions and Monetary Policy: a Corrigendum," Staff Reports 619, Federal Reserve Bank of New York, revised 01 Oct 2014.
  • Handle: RePEc:fip:fednsr:619
    as

    Download full text from publisher

    File URL: https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr619.html
    File Function: Full text
    Download Restriction: no

    File URL: https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr619.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    2. Alejandro Justiniano & Giorgio E. Primiceri, 2008. "The Time-Varying Volatility of Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 98(3), pages 604-641, June.
    3. Canova, Fabio & Gambetti, Luca, 2009. "Structural changes in the US economy: Is there a role for monetary policy?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 477-490, February.
    4. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    5. Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013. "Macroeconomic forecasting and structural change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, January.
    6. Marco Del Negro & Christopher Otrok, 2008. "Dynamic factor models with time-varying parameters: measuring changes in international business cycles," Staff Reports 326, Federal Reserve Bank of New York.
    7. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
    8. Vasco C├║rdia & Marco Del Negro & Daniel L. Greenwald, 2014. "Rare Shocks, Great Recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1031-1052, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Bayesian methods; time-varying volatility;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fednsr:619. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Amy Farber). General contact details of provider: http://edirc.repec.org/data/frbnyus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.