IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Hierarchical Markov Normal Mixture Models with Applications to Financial Asset Returns

Listed author(s):
  • John Geweke
  • Gianni Amisano

Motivated by the common problem of constructing predictive distributions for daily asset returns over horizons of one to several trading days, this article introduces a new model for time series. This model is a generalization of the Markov normal mixture model in which the mixture components are themselves normal mixtures, and it is a specific case of an artificial neural network model with two hidden layers. The article characterizes the implications of the model for time series in two ways. First, it derives the restrictions placed on the autocovariance function and linear representation of integer powers of the time series in terms of the number of components in the mixture and the roots of the Markov process. Second, it uses the prior predictive distribution of the model to study the implications of the model for some interesting functions of asset returns. The article uses the model to construct predictive distributions of daily S&P 500 returns 1971-2005, US dollar - UK pound returns 1972-1998, and one- and ten-year maturity bonds 1987-2006. It compares the performance of the model for these returns with ARCH and stochastic volatility models using the predictive likelihood function. The model's performance is about the same as its competitors for the bond returns, better than its competitors for the S&P 500 returns, and much better than its competitors for the dollar-pound returns. In and out of sample validation exercises with predictive distributions identify some remaining deficiencies in the model and suggest potential improvements. The article concludes by using the model to form predictive distributions of one- to ten-day returns during volatile episodes for the S&P 500, dollar-pound and bond return series.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by University of Brescia, Department of Economics in its series Working Papers with number 0705.

in new window

Date of creation: 2007
Handle: RePEc:ubs:wpaper:0705
Contact details of provider: Postal:
Via S. Faustino 74/B, 25122 Brescia

Phone: +39-(0)30-2988704
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ubs:wpaper:0705. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matteo Galizzi)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.