IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Modeling the Volatility of the Dow Jones Islamic Market World Index Using a Fractionally Integrated Time Varying GARCH (FITVGARCH) Model

  • Adnen Ben Nasr

    ()

    (Laboratoire BESTMOD, ISG de Tunis, Universite de Tunis, Tunisia)

  • Ahdi N. Ajmi

    ()

    (College of Science and Humanities in Slayel, Salman bin Abdulaziz University, Kingdom of Saudi Arabia)

  • Rangan Gupta

    ()

    (Department of Economics, University of Pretoria)

Appropriate modeling of the process of volatility has implications for portfolio selection, the pricing of derivative securities and risk management. Further, a large body of research has suggested that both long memory and structural changes simultaneously characterize the structure of financial returns volatility. Given this, in this paper, we aim to model conditional volatility of the returns of the Dow Jones Islamic Market World Index (DJIM), interest on which has come to the fore following the need for renovation of the conventional financial system, in the wake of the recent global financial crisis. To model the conditional volatility of the DJIM returns, accounting for both long memory and structural changes, we allow the parameters in the conditional variance equation of the Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity (FIGARCH) model to be time dependent, such that the parameters evolve smoothly over time based on a logistic smooth transition function, yielding a Fractionally Integrated Time Varying Generalized Autoregressive Conditional Heteroskedasticity (FITVGARCH) model. Our results show that, in terms of model diagnostics and information criteria, the FITVGARCH model performs better than the FIGARCH model in explaining conditional volatility of the DJIM returns, thus, highlighting the need to model simultaneously long-memory and structural changes in the volatility process of asset returns.

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by University of Pretoria, Department of Economics in its series Working Papers with number 201357.

as
in new window

Length: 27 pages
Date of creation: Sep 2013
Date of revision:
Handle: RePEc:pre:wpaper:201357
Contact details of provider: Postal: PRETORIA, 0002
Phone: (+2712) 420 2413
Fax: (+2712) 362-5207
Web page: http://www.up.ac.za/economics

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
  2. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-83, July.
  3. Adnen Ben Nasr & Mohamed Boutahar & Abdelwahed Trabelsi, 2010. "Fractionally integrated time varying GARCH model," Statistical Methods and Applications, Springer, vol. 19(3), pages 399-430, August.
  4. Tsai, Henghsiu & Chan, Kung-Sik, 2008. "A Note On Inequality Constraints In The Garch Model," Econometric Theory, Cambridge University Press, vol. 24(03), pages 823-828, June.
  5. Bollerslev, Tim & Engle, Robert F, 1993. "Common Persistence in Conditional Variances," Econometrica, Econometric Society, vol. 61(1), pages 167-86, January.
  6. I.N. Lobato & N.E. Savin, 1996. "Real and Spurious Long Memory Properties of Stock Market Data," Econometrics 9605004, EconWPA, revised 26 Sep 1996.
  7. Martin Sola & M Karansos & Zacharias Psaradakis, 2002. "On the autocorrelation properties of Long Memory Garch Processes," Department of Economics Working Papers 025, Universidad Torcuato Di Tella.
  8. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
  9. Christian Conrad & Berthold R. Haag, 2006. "Inequality Constraints in the Fractionally Integrated GARCH Model," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(3), pages 413-449.
  10. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
  11. Christina Amado & Timo Teräsvirta, 2008. "Modelling Conditional and Unconditional Heteroskedasticity with Smoothly Time-Varying Structure," CREATES Research Papers 2008-08, School of Economics and Management, University of Aarhus.
  12. repec:dgr:uvatin:20040067 is not listed on IDEAS
  13. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  14. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
  15. Torben G. Andersen & Tim Bollerslev, 1996. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," NBER Working Papers 5752, National Bureau of Economic Research, Inc.
  16. Michel Beine & Sebastien Laurent, 2000. "Structural Change and Long Memory in Volatility: New Evidence from Daily Exchange Rates," Econometric Society World Congress 2000 Contributed Papers 0312, Econometric Society.
  17. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
  18. Lux, Thomas & Morales-Arias, Leonardo, 2010. "Forecasting volatility under fractality, regime-switching, long memory and student-t innovations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2676-2692, November.
  19. Lundbergh, Stefan & Terasvirta, Timo, 2002. "Evaluating GARCH models," Journal of Econometrics, Elsevier, vol. 110(2), pages 417-435, October.
  20. Catalin Starica & Clive Granger, 2004. "Non-stationarities in stock returns," Econometrics 0411016, EconWPA.
  21. So, Mike K P & Lam, K & Li, W K, 1998. "A Stochastic Volatility Model with Markov Switching," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 244-53, April.
  22. Lin, Chien-Fu Jeff & Terasvirta, Timo, 1994. "Testing the constancy of regression parameters against continuous structural change," Journal of Econometrics, Elsevier, vol. 62(2), pages 211-228, June.
  23. Elena Andreou & Eric Ghysels, 2001. "Detecting Multiple Breaks in Financial Market Volatility Dynamics," University of Cyprus Working Papers in Economics 0202, University of Cyprus Department of Economics.
  24. Eitrheim, Øyvind & Teräsvirta, Timo, 1995. "Testing the Adequacy of Smooth Transition Autoregressive Models," SSE/EFI Working Paper Series in Economics and Finance 56, Stockholm School of Economics.
  25. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  26. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
  27. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-96, May.
  28. Lux, Thomas, 2004. "The Markov-switching multi-fractal model of asset returns: GMM estimation and linear forecasting of volatility," Economics Working Papers 2004,11, Christian-Albrechts-University of Kiel, Department of Economics.
  29. Dueker, Michael J, 1997. "Markov Switching in GARCH Processes and Mean-Reverting Stock-Market Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 26-34, January.
  30. Hans Jensen, 2004. "Review Essay," Review of Social Economy, Taylor & Francis Journals, vol. 62(1), pages 101-112.
  31. Richard T. Baillie & Claudio Morana, 2007. "Modeling Long Memory and Structural Breaks in Conditional Variances: an Adaptive FIGARCH Approach," ICER Working Papers - Applied Mathematics Series 11-2007, ICER - International Centre for Economic Research.
  32. Nelson, Daniel B & Cao, Charles Q, 1992. "Inequality Constraints in the Univariate GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 229-35, April.
  33. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
  34. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  35. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  36. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
  37. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-34, April.
  38. Y. K. Tse, 1998. "The conditional heteroscedasticity of the yen-dollar exchange rate," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(1), pages 49-55.
  39. Jensen, S ren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(06), pages 1203-1226, December.
  40. Breidt, F. Jay & Hsu, Nan-Jung, 2002. "A class of nearly long-memory time series models," International Journal of Forecasting, Elsevier, vol. 18(2), pages 265-281.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:201357. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rangan Gupta)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.