IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/9605004.html
   My bibliography  Save this paper

Real and Spurious Long Memory Properties of Stock Market Data

Author

Listed:
  • I.N. Lobato

    (Univ of Iowa)

  • N.E. Savin

    (Univ. of Iowa)

Abstract

We test for the presence of long memory in daily stock returns and their squares using a robust semiparametric procedure. Spurious results can be produced by nonstationarity and aggregation. We address these problems by analyzing subperiods of returns and using individual stocks. The test results show no evidence of long memory in the returns. By contrast, there is strong evidence in the squared returns.

Suggested Citation

  • I.N. Lobato & N.E. Savin, 1996. "Real and Spurious Long Memory Properties of Stock Market Data," Econometrics 9605004, University Library of Munich, Germany, revised 26 Sep 1996.
  • Handle: RePEc:wpa:wuwpem:9605004
    Note: Zipped using PKZIP v2.04, encoded using UUENCODE v5.15. Zipped file includes 1 file --ui9606.wpa (Windows95 file 17 pages)
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/9605/9605004.html
    Download Restriction: no

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/9605/9605004.pdf
    Download Restriction: no

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/9605/9605004.ps.gz
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Brock, W.A. & De Lima, P.J.F., 1995. "Nonlinear Time Series, Complexity Theory, and Finance," Working papers 9523, Wisconsin Madison - Social Systems.
    2. Loretan, Mico & Phillips, Peter C. B., 1994. "Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets," Journal of Empirical Finance, Elsevier, vol. 1(2), pages 211-248, January.
    3. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    4. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    5. Stoll, Hans R. & Whaley, Robert E., 1990. "The Dynamics of Stock Index and Stock Index Futures Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(4), pages 441-468, December.
    6. Madhavan, Ananth & Richardson, Matthew & Roomans, Mark, 1997. "Why Do Security Prices Change? A Transaction-Level Analysis of NYSE Stocks," Review of Financial Studies, Society for Financial Studies, vol. 10(4), pages 1035-1064.
    7. Brock, William A. & Kleidon, Allan W., 1992. "Periodic market closure and trading volume : A model of intraday bids and asks," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 451-489.
    8. Grossman, Sanford J & Zhou, Zhongquan, 1996. "Equilibrium Analysis of Portfolio Insurance," Journal of Finance, American Finance Association, vol. 51(4), pages 1379-1403, September.
    9. Ignacio N. Lobato & Peter M. Robinson, 1998. "A Nonparametric Test for I(0)," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 475-495.
    10. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    11. Hidalgo, Javier & Robinson, Peter M., 1996. "Testing for structural change in a long-memory environment," Journal of Econometrics, Elsevier, vol. 70(1), pages 159-174, January.
    12. Greene, Myron T. & Fielitz, Bruce D., 1977. "Long-term dependence in common stock returns," Journal of Financial Economics, Elsevier, vol. 4(3), pages 339-349, May.
    13. Pinkse, Joris, 1998. "A consistent nonparametric test for serial independence," Journal of Econometrics, Elsevier, vol. 84(2), pages 205-231, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hiemstra, Craig & Jones, Jonathan D., 1997. "Another look at long memory in common stock returns," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 373-401, December.
    2. Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017. "Long Memory and Data Frequency in Financial Markets," CESifo Working Paper Series 6396, CESifo.
    3. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    4. Assaf, Ata, 2016. "MENA stock market volatility persistence: Evidence before and after the financial crisis of 2008," Research in International Business and Finance, Elsevier, vol. 36(C), pages 222-240.
    5. González-Pla, Francisco & Lovreta, Lidija, 2019. "Persistence in firm’s asset and equity volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    6. Thomas Lux, 1996. "Long-term stochastic dependence in financial prices: evidence from the German stock market," Applied Economics Letters, Taylor & Francis Journals, vol. 3(11), pages 701-706.
    7. Stanley, H.E. & Gopikrishnan, P. & Plerou, V. & Amaral, L.A.N., 2000. "Quantifying fluctuations in economic systems by adapting methods of statistical physics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 339-361.
    8. Axioglou, Christos & Skouras, Spyros, 2011. "Markets change every day: Evidence from the memory of trade direction," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 423-446, June.
    9. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    10. Limam Imed, 2003. "Is Long Memory a Property of Thin Stock Markets? International Evidence Using Arab Countries," Review of Middle East Economics and Finance, De Gruyter, vol. 1(3), pages 56-71, December.
    11. Olan Henry, 2002. "Long memory in stock returns: some international evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 12(10), pages 725-729.
    12. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    13. Ngene, Geoffrey & Tah, Kenneth A. & Darrat, Ali F., 2017. "Long memory or structural breaks: Some evidence for African stock markets," Review of Financial Economics, Elsevier, vol. 34(C), pages 61-73.
    14. Krämer, Walter & Sibbertsen, Philipp & Kleiber, Christian, 2001. "Long memory vs. structural change in financial time series," Technical Reports 2001,37, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    15. Kyaw, NyoNyo A. & Los, Cornelis A. & Zong, Sijing, 2006. "Persistence characteristics of Latin American financial markets," Journal of Multinational Financial Management, Elsevier, vol. 16(3), pages 269-290, July.
    16. Avishek Bhandari & Bandi Kamaiah, 2021. "Long Memory and Fractality Among Global Equity Markets: a Multivariate Wavelet Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 23-37, March.
    17. Ata Assaf, 2008. "Long memory in international equity markets: revisited," Applied Financial Economics Letters, Taylor and Francis Journals, vol. 4(6), pages 433-437.
    18. Golinski, Adam & Madeira, Joao & Rambaccussing, Dooruj, 2014. "Fractional Integration of the Price-Dividend Ratio in a Present-Value Model of Stock Prices," SIRE Discussion Papers 2015-79, Scottish Institute for Research in Economics (SIRE).
    19. Renzo Pardo Figueroa & Gabriel Rodríguez, 2014. "Distinguishing between True and Spurious Long Memory in the Volatility of Stock Market Returns in Latin America," Documentos de Trabajo / Working Papers 2014-395, Departamento de Economía - Pontificia Universidad Católica del Perú.
    20. Chaker Aloui & Duc Khuong Nguyen, 2014. "On the detection of extreme movements and persistent behaviour in Mediterranean stock markets: a wavelet-based approach," Applied Economics, Taylor & Francis Journals, vol. 46(22), pages 2611-2622, August.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:9605004. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.