IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Markets change every day: Evidence from the memory of trade direction

  • Axioglou, Christos
  • Skouras, Spyros
Registered author(s):

    We present empirical evidence that there are periodic, specifically daily, structural breaks in the trade direction time series process, a fact with implications for several key intra-day characteristics of markets. We suggest that breaks arise as a consequence of daily variation in order flow direction independently of intra-day events and as a consequence of a natural and widespread daily periodicity in the timing of investment decisions. Empirical implementation of our short memory AR model with daily level shifts captures the striking long horizon predictability of trade direction, performs better out-of-sample than the standard long memory ARFIMA alternative and is computationally easier to estimate.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S092753981100003X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Empirical Finance.

    Volume (Year): 18 (2011)
    Issue (Month): 3 (June)
    Pages: 423-446

    as
    in new window

    Handle: RePEc:eee:empfin:v:18:y:2011:i:3:p:423-446
    Contact details of provider: Web page: http://www.elsevier.com/locate/jempfin

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
    2. Fabrizio Lillo & J. Doyne Farmer, 2003. "The long memory of the efficient market," Papers cond-mat/0311053, arXiv.org, revised Jul 2004.
    3. Cătălin Stărică & Clive Granger, 2005. "Nonstationarities in Stock Returns," The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 503-522, August.
    4. Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2004. "Fluctuations and response in financial markets: the subtle nature of 'random' price changes," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 176-190.
    5. Lo, Andrew W. (Andrew Wen-Chuan), 1989. "Long-term memory in stock market prices," Working papers 3014-89., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    6. Foucault, Thierry, 1999. "Order flow composition and trading costs in a dynamic limit order market1," Journal of Financial Markets, Elsevier, vol. 2(2), pages 99-134, May.
    7. Lobato, I.N. & Savin, N.E., 1996. "Real and Spurious Long Memory Properties of Stock Market Data," Working Papers 96-07, University of Iowa, Department of Economics.
    8. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    9. Lobato, Ignacio N & Velasco, Carlos, 2000. "Long Memory in Stock-Market Trading Volume," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(4), pages 410-27, October.
    10. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2000. "Order Imbalance, Liquidity, and Market Returns," University of California at Los Angeles, Anderson Graduate School of Management qt7gh9t9w3, Anderson Graduate School of Management, UCLA.
    11. Donald W.K. Andrews, 1988. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Cowles Foundation Discussion Papers 877R, Cowles Foundation for Research in Economics, Yale University, revised Jul 1989.
    12. Bollerslev, Tim & Domowitz, Ian & Wang, Jianxin, 1997. "Order flow and the bid-ask spread: An empirical probability model of screen-based trading," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1471-1491, June.
    13. Beran, Jan & Ocker, Dirk, 2001. "Volatility of Stock-Market Indexes--An Analysis Based on SEMIFAR Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 103-16, January.
    14. Chen, Chung & Tiao, George C, 1990. "Random Level-Shift Time Series Models, ARIMA Approximations, and Level-Shift Detection," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 83-97, January.
    15. Parameswaran Gopikrishnan & Vasiliki Plerou & Xavier Gabaix & H. Eugene Stanley, 2000. "Statistical Properties of Share Volume Traded in Financial Markets," Papers cond-mat/0008113, arXiv.org.
    16. Pesaran, M Hashem & Pettenuzzo, Davide & Timmermann, Allan G, 2004. "Forecasting Time Series Subject to Multiple Structural Breaks," CEPR Discussion Papers 4636, C.E.P.R. Discussion Papers.
    17. Liu, Ming, 2000. "Modeling long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 99(1), pages 139-171, November.
    18. Hidalgo, Javier & Robinson, Peter M., 1996. "Testing for structural change in a long-memory environment," Journal of Econometrics, Elsevier, vol. 70(1), pages 159-174, January.
    19. Szabolcs Mike & J. Doyne Farmer, 2007. "An empirical behavioral model of liquidity and volatility," Papers 0709.0159, arXiv.org.
    20. Francis X. Diebold & Atsushi Inoue, 2000. "Long Memory and Regime Switching," NBER Technical Working Papers 0264, National Bureau of Economic Research, Inc.
    21. David Easley & Soeren Hvidkjaer & Maureen O'Hara, 2002. "Is Information Risk a Determinant of Asset Returns?," Journal of Finance, American Finance Association, vol. 57(5), pages 2185-2221, October.
    22. Lakonishok, Josef & Shleifer, Andrei & Vishny, Robert W., 1992. "The impact of institutional trading on stock prices," Journal of Financial Economics, Elsevier, vol. 32(1), pages 23-43, August.
    23. Greene, Myron T. & Fielitz, Bruce D., 1977. "Long-term dependence in common stock returns," Journal of Financial Economics, Elsevier, vol. 4(3), pages 339-349, May.
    24. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    25. Biais, Bruno & Hillion, Pierre & Spatt, Chester, 1995. " An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse," Journal of Finance, American Finance Association, vol. 50(5), pages 1655-89, December.
    26. Lee, Charles M C & Ready, Mark J, 1991. " Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-46, June.
    27. Finucane, Thomas J., 2000. "A Direct Test of Methods for Inferring Trade Direction from Intra-Day Data," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(04), pages 553-576, December.
    28. Austin Gerig, 2008. "A Theory for Market Impact: How Order Flow Affects Stock Price," Papers 0804.3818, arXiv.org, revised Jul 2008.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:18:y:2011:i:3:p:423-446. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.