IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v4y2004i2p176-190.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Fluctuations and response in financial markets: the subtle nature of 'random' price changes

Author

Listed:
  • Jean-Philippe Bouchaud
  • Yuval Gefen
  • Marc Potters
  • Matthieu Wyart

Abstract

Using trades and quotes data from the Paris stock market, we show that the random walk nature of traded prices results from a very delicate interplay between two opposite tendencies: long-range correlated market orders that lead to super-diffusion (or persistence), and mean reverting limit orders that lead to sub-diffusion (or anti-persistence). We define and study a model where the price, at any instant, is the result of the impact of all past trades, mediated by a non-constant 'propagator' in time that describes the response of the market to a single trade. Within this model, the market is shown to be, in a precise sense, at a critical point, where the price is purely diffusive and the average response function almost constant. We find empirically, and discuss theoretically, a fluctuation-response relation. We also discuss the fraction of truly informed market orders, that correctly anticipate short-term moves, and find that it is quite small.

Suggested Citation

  • Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2004. "Fluctuations and response in financial markets: the subtle nature of 'random' price changes," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 176-190.
  • Handle: RePEc:taf:quantf:v:4:y:2004:i:2:p:176-190
    DOI: 10.1088/1469-7688/4/2/007
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1088/1469-7688/4/2/007
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1088/1469-7688/4/2/007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871, November.
    2. Shleifer, Andrei, 2000. "Inefficient Markets: An Introduction to Behavioral Finance," OUP Catalogue, Oxford University Press, number 9780198292272, Decembrie.
    3. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    2. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    3. Choi, Jaehyung, 2012. "Spontaneous symmetry breaking of arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3206-3218.
    4. Serge Galam, 2016. "The invisible hand and the rational agent are behind bubbles and crashes," Papers 1601.02990, arXiv.org.
    5. Pištěk, Miroslav & Slanina, František, 2011. "Diversity of scales makes an advantage: The case of the Minority Game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2549-2561.
    6. D. S. Grebenkov & J. Serror, 2013. "Following a Trend with an Exponential Moving Average: Analytical Results for a Gaussian Model," Papers 1308.5658, arXiv.org.
    7. Chen, Huan & Mai, Yong & Li, Sai-Ping, 2014. "Analysis of network clustering behavior of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 360-367.
    8. Denis S. Grebenkov & Jeremy Serror, 2014. "Optimal Allocation of Trend Following Strategies," Papers 1410.8409, arXiv.org.
    9. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    10. Sebastien Valeyre, 2022. "Optimal trend following portfolios," Papers 2201.06635, arXiv.org.
    11. Grebenkov, Denis S. & Serror, Jeremy, 2015. "Optimal allocation of trend following strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 107-125.
    12. Philippe Jacquinot & Nikolay Sukhomlin, 2010. "A direct formulation of implied volatility in the Black-Scholes model," Post-Print hal-02533014, HAL.
    13. Wang, Jie & Wang, Jun, 2020. "Cross-correlation complexity and synchronization of the financial time series on Potts dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    14. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    15. Olivier Guedj & Jean-Philippe Bouchaud, 2005. "Experts' Earning Forecasts: Bias, Herding And Gossamer Information," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(07), pages 933-946.
    16. Baaquie, Belal E. & Yu, Miao & Du, Xin, 2016. "Multiple commodities in statistical microeconomics: Model and market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 912-929.
    17. Zhaoyuan Li & Maozai Tian, 2017. "A New Method For Dynamic Stock Clustering Based On Spectral Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 50(3), pages 373-392, October.
    18. Jaehyung Choi, 2011. "Spontaneous symmetry breaking of arbitrage," Papers 1107.5122, arXiv.org, revised Apr 2012.
    19. Xinyu Wang & Liang Zhao & Ning Zhang & Liu Feng & Haibo Lin, 2022. "Stability of China's Stock Market: Measure and Forecast by Ricci Curvature on Network," Papers 2204.06692, arXiv.org.
    20. Baaquie, Belal Ehsan, 2018. "Bonds with index-linked stochastic coupons in quantum finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 148-169.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:4:y:2004:i:2:p:176-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.