IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v18y2002i2p265-281.html
   My bibliography  Save this article

A class of nearly long-memory time series models

Author

Listed:
  • Breidt, F. Jay
  • Hsu, Nan-Jung

Abstract

No abstract is available for this item.

Suggested Citation

  • Breidt, F. Jay & Hsu, Nan-Jung, 2002. "A class of nearly long-memory time series models," International Journal of Forecasting, Elsevier, vol. 18(2), pages 265-281.
  • Handle: RePEc:eee:intfor:v:18:y:2002:i:2:p:265-281
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(01)00157-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. repec:cdl:ucsdec:qt4d60t4jh is not listed on IDEAS
    2. Chen, Chung & Tiao, George C, 1990. "Random Level-Shift Time Series Models, ARIMA Approximations, and Level-Shift Detection," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 83-97, January.
    3. Liu, Ming, 2000. "Modeling long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 99(1), pages 139-171, November.
    4. Basak, Gopal K & Chan, Ngai Hang & Palma, Wilfredo, 2001. "The Approximation of Long-Memory Processes by an ARMA Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(6), pages 367-389, September.
    5. William R. Parke, 1999. "What Is Fractional Integration?," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 632-638, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominique Guegan, 2007. "Global and local stationary modelling in finance: theory and empirical evidence," Post-Print halshs-00187875, HAL.
    2. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    3. Kuswanto, Heri & Sibbertsen, Philipp, 2008. "A Study on "Spurious Long Memory in Nonlinear Time Series Models"," Hannover Economic Papers (HEP) dp-410, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    4. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    5. Adnen Ben Nasr & Ahdi Noomen Ajmi & Rangan Gupta, 2014. "Modelling the volatility of the Dow Jones Islamic Market World Index using a fractionally integrated time-varying GARCH (FITVGARCH) model," Applied Financial Economics, Taylor & Francis Journals, vol. 24(14), pages 993-1004, July.
    6. Jonathan Dark, 2004. "Long memory in the volatility of the Australian All Ordinaries Index and the Share Price Index futures," Monash Econometrics and Business Statistics Working Papers 5/04, Monash University, Department of Econometrics and Business Statistics.
    7. Jonathan Dark, 2004. "Bivariate error correction FIGARCH and FIAPARCH models on the Australian All Ordinaries Index and its SPI futures," Monash Econometrics and Business Statistics Working Papers 4/04, Monash University, Department of Econometrics and Business Statistics.
    8. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    9. Dominique Guegan, 2008. "Non-stationarity and meta-distribution," Post-Print halshs-00270708, HAL.
    10. Rehim Kilic, 2011. "A conditional variance tale from an emerging economy's freely floating exchange rate," Applied Economics, Taylor & Francis Journals, vol. 43(19), pages 2465-2480.
    11. Kuswanto, Heri, 2009. "A New Simple Test Against Spurious Long Memory Using Temporal Aggregation," Hannover Economic Papers (HEP) dp-425, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    12. Adnen Ben Nasr & Mohamed Boutahar & Abdelwahed Trabelsi, 2010. "Fractionally integrated time varying GARCH model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(3), pages 399-430, August.
    13. Leschinski, Christian & Sibbertsen, Philipp, 2018. "The Periodogram of Spurious Long-Memory Processes," Hannover Economic Papers (HEP) dp-632, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smith, Aaron, 2005. "Level Shifts and the Illusion of Long Memory in Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 321-335, July.
    2. Robert A. Connolly & Z. Nuray G‹Ner & Kenneth N. Hightower, 2007. "Evidence on the Extent and Potential Sources of Long Memory in U.S. Treasury Security Returns and Yields," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(2-3), pages 689-702, March.
    3. Leipus, Remigijus & Paulauskas, Vygantas & Surgailis, Donatas, 2005. "Renewal regime switching and stable limit laws," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 299-327.
    4. Leschinski, Christian & Sibbertsen, Philipp, 2018. "The Periodogram of Spurious Long-Memory Processes," Hannover Economic Papers (HEP) dp-632, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    5. Davidson, James & Sibbertsen, Philipp, 2005. "Generating schemes for long memory processes: regimes, aggregation and linearity," Journal of Econometrics, Elsevier, vol. 128(2), pages 253-282, October.
    6. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    7. Axioglou, Christos & Skouras, Spyros, 2011. "Markets change every day: Evidence from the memory of trade direction," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 423-446, June.
    8. Rohit Deo & Meng-Chen Hsieh & Clifford M. Hurvich & Philippe Soulier, 2007. "Long Memory in Nonlinear Processes," Papers 0706.1836, arXiv.org.
    9. Leipus, Remigijus & Viano, Marie-Claude, 2003. "Long memory and stochastic trend," Statistics & Probability Letters, Elsevier, vol. 61(2), pages 177-190, January.
    10. Hsieh, Meng-Chen & Hurvich, Clifford M. & Soulier, Philippe, 2007. "Asymptotics for duration-driven long range dependent processes," Journal of Econometrics, Elsevier, vol. 141(2), pages 913-949, December.
    11. Francis Ahking, 2010. "Non-parametric tests of real exchange rates in the post-Bretton Woods era," Empirical Economics, Springer, vol. 39(2), pages 439-456, October.
    12. Kuswanto, Heri & Sibbertsen, Philipp, 2008. "A Study on "Spurious Long Memory in Nonlinear Time Series Models"," Hannover Economic Papers (HEP) dp-410, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    13. Diniz, Ana & Barreiros, João & Crato, Nuno, 2012. "A new model for explaining long-range correlations in human time interval production," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1908-1919.
    14. Yigit, Taner M., 2010. "Inflation targeting: An indirect approach to assess the direct impact," Journal of International Money and Finance, Elsevier, vol. 29(7), pages 1357-1368, November.
    15. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    16. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    17. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
    18. repec:ipg:wpaper:2014-503 is not listed on IDEAS
    19. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    20. Gil-Alana, L.A., 2006. "Fractional integration in daily stock market indexes," Review of Financial Economics, Elsevier, vol. 15(1), pages 28-48.
    21. Christopher A. Sims, 1993. "A Nine-Variable Probabilistic Macroeconomic Forecasting Model," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 179-212, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:18:y:2002:i:2:p:265-281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.