IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Detecting Mutiple Breaks in Financial Market Volatility Dynamics

  • Elena Andreou
  • Eric Ghysels

We apply several recently proposed tests for structural breaks in conditional variance and covariance dynamics. The tests apply to both the class of ARCH and SV type processes and allow for long memory features. We also apply them to data-driven volatility estimators using high-frequency data and suggest multivariate applications. In addition to testing for the presence of breaks, the statistics allow to identify the number of breaks and the location of multiple breaks. We study the size and power of the new tests under various realistic univariate and multivariate conditional variance models and sampling schemes. The paper concludes with an empirical analysis using data from the stock and FX markets for which we find multiple breaks associated with the Asian and Russian financial crises. We find changes in the dynamics and long memory of volatility in the samples prior and post the breaks. Nous appliquons plusieurs nouveaux tests conçus pour déceler les ruptures structurelles dans la dynamique de variance et de covariance conditionnelles. Les tests s'appliquent à la fois aux processus de la classe ARCH et de type SV et tiennent compte des caractéristiques de mémoire longue. Nous les appliquons également aux estimateurs de volatilité engendrés par les données, en utilisant des données à haute fréquence et nous suggérons des applications multivariées. En plus de déterminer la présence des ruptures, les statistiques permettent d identifier le nombre de ruptures ainsi que l'emplacement de ruptures multiples. Nous étudions la taille et la puissance des nouveaux tests pour divers modèles réalistes univariés et multivariés de variance conditionnelle et d échantillonnage. L article conclut avec une analyse empirique à partir de données provenant des marchés d actions et de taux de change pour lesquels nous trouvons de multiples ruptures associées aux crises financières asiatiques et russes. Dans les échantillons sélectionnés avant et après les ruptures, nous trouvons des changements dans la dynamique et dans la mémoire longue de la volatilité.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cirano.qc.ca/files/publications/2001s-65.pdf
Download Restriction: no

Paper provided by CIRANO in its series CIRANO Working Papers with number 2001s-65.

as
in new window

Length: 48 pages
Date of creation: 01 Nov 2001
Date of revision:
Handle: RePEc:cir:cirwor:2001s-65
Contact details of provider: Postal: 1130 rue Sherbrooke Ouest, suite 1400, Montréal, Quéc, H3A 2M8
Phone: (514) 985-4000
Fax: (514) 985-4039
Web page: http://www.cirano.qc.ca/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Aggarwal, Reena & Inclan, Carla & Leal, Ricardo, 1999. "Volatility in Emerging Stock Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(01), pages 33-55, March.
  2. Christian Francq & Jean-Michel Zakoïan, 1997. "Estimating Weak Garch Representations," Working Papers 97-40, Centre de Recherche en Economie et Statistique.
  3. Ghysels, E. & Harvey, A. & Renault, E., 1996. "Stochastic Volatility," Cahiers de recherche 9613, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  4. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  5. Clive W.J. Granger & Namwon Hyung, 2013. "Occasional Structural Breaks and Long Memory," Annals of Economics and Finance, Society for AEF, vol. 14(2), pages 739-764, November.
  6. I.N. Lobato & N.E. Savin, 1996. "Real and Spurious Long Memory Properties of Stock Market Data," Econometrics 9605004, EconWPA, revised 26 Sep 1996.
  7. Poterba, James M & Summers, Lawrence H, 1986. "The Persistence of Volatility and Stock Market Fluctuations," American Economic Review, American Economic Association, vol. 76(5), pages 1142-51, December.
  8. Perron, P. & Bai, J., 1995. "Estimating and Testing Linear Models with Multiple Structural Changes," Cahiers de recherche 9552, Universite de Montreal, Departement de sciences economiques.
  9. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(02), pages 280-310, April.
  10. Hsieh, David A, 1991. " Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-77, December.
  11. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-56, July.
  12. Kokoszka, Piotr & Leipus, Remigijus, 1998. "Change-point in the mean of dependent observations," Statistics & Probability Letters, Elsevier, vol. 40(4), pages 385-393, November.
  13. Ho, Hwai-Chung Jeff & Lin, Chien-fu, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 272, July.
  14. Bai, Jushan, 1997. "Estimating Multiple Breaks One at a Time," Econometric Theory, Cambridge University Press, vol. 13(03), pages 315-352, June.
  15. Chen, Chung & Tiao, George C, 1990. "Random Level-Shift Time Series Models, ARIMA Approximations, and Level-Shift Detection," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 83-97, January.
  16. Engle, Robert F & Smith, Aaron, 1998. "Stochastic Permanent Breaks," University of California at San Diego, Economics Working Paper Series qt99v0s0zx, Department of Economics, UC San Diego.
  17. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038 Elsevier.
  18. Engle, Robert F & Ito, Takatoshi & Lin, Wen-Ling, 1990. "Meteor Showers or Heat Waves? Heteroskedastic Intra-daily Volatility in the Foreign Exchange Market," Econometrica, Econometric Society, vol. 58(3), pages 525-42, May.
  19. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
  20. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-34, April.
  21. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," Center for Financial Institutions Working Papers 99-08, Wharton School Center for Financial Institutions, University of Pennsylvania.
  22. Donald W.K. Andrews, 1988. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Cowles Foundation Discussion Papers 877R, Cowles Foundation for Research in Economics, Yale University, revised Jul 1989.
  23. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
  24. Geweke, John, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 269-71, July.
  25. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
  26. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  27. Francis X. Diebold & Atsushi Inoue, 2000. "Long Memory and Regime Switching," NBER Technical Working Papers 0264, National Bureau of Economic Research, Inc.
  28. Granger, Clive W J, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 268-69, July.
  29. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous-time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323.
  30. Wouter J. Den Haan & Andrew T. Levin, 1996. "A Practitioner's Guide to Robust Covariance Matrix Estimation," NBER Technical Working Papers 0197, National Bureau of Economic Research, Inc.
  31. van Dijk, Dick & Franses, Philip Hans & Lucas, Andre, 1999. "Testing for ARCH in the Presence of Additive Outliers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 539-62, Sept.-Oct.
  32. Charles S. Bos & Philip Hans Franses & Marius Ooms, 1998. "Long Memory and Level Shifts: Re-Analyzing Inflation Rates," Tinbergen Institute Discussion Papers 98-039/4, Tinbergen Institute.
  33. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
  34. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(01), pages 17-39, February.
  35. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(01), pages 29-52, March.
  36. Yao, Yi-Ching, 1988. "Estimating the number of change-points via Schwarz' criterion," Statistics & Probability Letters, Elsevier, vol. 6(3), pages 181-189, February.
  37. Andreou, Elena & Ghysels, Eric, 2002. "Rolling-Sample Volatility Estimators: Some New Theoretical, Simulation, and Empirical Results," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 363-76, July.
  38. Robinson, P M, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 276-79, July.
  39. Christian Francq & Jean-Michel Zakoïan, 2000. "Estimating Stochastic Volatility Models : A New Approach Based on ARMA Representations," Working Papers 2000-47, Centre de Recherche en Economie et Statistique.
  40. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
  41. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
  42. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
  43. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  44. Van Dijk, Dick & Franses, Philip Hans & Lucas, Andre, 1999. "Testing for Smooth Transition Nonlinearity in the Presence of Outliers," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(2), pages 217-35, April.
  45. Baillie, Richard T, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 273-76, July.
  46. Foster, Dean P & Nelson, Daniel B, 1996. "Continuous Record Asymptotics for Rolling Sample Variance Estimators," Econometrica, Econometric Society, vol. 64(1), pages 139-74, January.
  47. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
  48. Shiqing Ling & Michael McAleer, 2001. "Stationarity and the Existence of Moments of a Family of GARCH Processes," ISER Discussion Paper 0535, Institute of Social and Economic Research, Osaka University.
  49. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-38, May.
  50. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
  51. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
  52. Lajos Horváth, 1997. "Detection of Changes in Linear Sequences," Annals of the Institute of Statistical Mathematics, Springer, vol. 49(2), pages 271-283, June.
  53. Taylor, Stephen J. & Xu, Xinzhong, 1997. "The incremental volatility information in one million foreign exchange quotations," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 317-340, December.
  54. Horváth, Lajos & Kokoszka, Piotr & Steinebach, Josef, 1999. "Testing for Changes in Multivariate Dependent Observations with an Application to Temperature Changes," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 96-119, January.
  55. repec:cup:etheor:v:13:y:1997:i:3:p:315-52 is not listed on IDEAS
  56. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2001s-65. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.