IDEAS home Printed from https://ideas.repec.org/p/fip/fedgif/685.html
   My bibliography  Save this paper

Log-periodogram estimation of long memory volatility dependencies with conditionally heavy tailed returns

Author

Listed:
  • Jonathan H. Wright

Abstract

Many recent papers have used semiparametric methods, especially the log-periodogram regression, to detect and estimate long memory in the volatility of asset returns. In these papers, the volatility is proxied by measures such as squared, log-squared and absolute returns. While the evidence for the existence of long memory is strong using any of these measures, the actual long memory parameter estimates can be sensitive to which measure is used. In Monte-Carlo simulations, I find that the choice of volatility measure makes little difference to the log-periodogram regression estimator if the data is Gaussian conditional on the volatility process. But, if the data is conditionally leptokurtic, the log-periodogram regression estimator using squared returns has a large downward bias, which is avoided by using other volatility measures. In U.S. stock return data, I find that squared returns give much lower estimates of the long memory parameter than the alternative volatility measures, which is consistent with the simulation results. I conclude that researchers should avoid using the squared returns in the semiparametric estimation of long memory volatility dependencies.

Suggested Citation

  • Jonathan H. Wright, 2000. "Log-periodogram estimation of long memory volatility dependencies with conditionally heavy tailed returns," International Finance Discussion Papers 685, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgif:685
    as

    Download full text from publisher

    File URL: http://www.federalreserve.gov/pubs/ifdp/2000/685/default.htm
    Download Restriction: no

    File URL: http://www.federalreserve.gov/pubs/ifdp/2000/685/ifdp685.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Loretan, Mico & Phillips, Peter C. B., 1994. "Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets," Journal of Empirical Finance, Elsevier, pages 211-248.
    4. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    5. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    6. Mandelbrot, Benoit B, 1971. "When Can Price Be Arbitraged Efficiently? A Limit to the Validity of the Random Walk and Martingale Models," The Review of Economics and Statistics, MIT Press, vol. 53(3), pages 225-236, August.
    7. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    8. Friedman, Moshe & Harris, Lawrence, 1998. "A Maximum Likelihood Approach for Non-Gaussian Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 284-291, July.
    9. Andersen, Torben G & Bollerslev, Tim, 1997. " Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    10. Roman Liesenfeld & Robert C. Jung, 2000. "Stochastic volatility models: conditional normality versus heavy-tailed distributions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., pages 137-160.
    11. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038 Elsevier.
    12. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
    13. Ignacio N. Lobato & Peter M. Robinson, 1998. "A Nonparametric Test for I(0)," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 475-495.
    14. Kelly David L. & Steigerwald Douglas G, 2004. "Private Information and High-Frequency Stochastic Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(1), pages 1-30, March.
    15. Robinson, P.M. & Henry, M., 1999. "Long And Short Memory Conditional Heteroskedasticity In Estimating The Memory Parameter Of Levels," Econometric Theory, Cambridge University Press, vol. 15(03), pages 299-336, June.
    16. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
    17. Geweke, John, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 269-271, July.
    18. Deo, Rohit S. & Hurvich, Clifford M., 2001. "On The Log Periodogram Regression Estimator Of The Memory Parameter In Long Memory Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 17(04), pages 686-710, August.
    19. Bollerslev, Tim & Wright, Jonathan H., 2000. "Semiparametric estimation of long-memory volatility dependencies: The role of high-frequency data," Journal of Econometrics, Elsevier, vol. 98(1), pages 81-106, September.
    20. Tina Hviid Rydberg & Neil Shephard, 2003. "Dynamics of Trade-by-Trade Price Movements: Decomposition and Models," Journal of Financial Econometrics, Society for Financial Econometrics, pages 2-25.
    21. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005. "Estimating Long Memory in Volatility," Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, July.
    22. Dacorogna, Michael M. & Muller, Ulrich A. & Nagler, Robert J. & Olsen, Richard B. & Pictet, Olivier V., 1993. "A geographical model for the daily and weekly seasonal volatility in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 12(4), pages 413-438, August.
    23. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, pages 325-371.
    24. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    25. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    26. Gallant, A. Ronald & Hsieh, David & Tauchen, George, 1997. "Estimation of stochastic volatility models with diagnostics," Journal of Econometrics, Elsevier, pages 159-192.
    27. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    28. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    29. Robinson, P. M., 2001. "The memory of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 101(2), pages 195-218, April.
    30. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    2. repec:eee:revfin:v:34:y:2017:i:c:p:61-73 is not listed on IDEAS
    3. Frederiksen, Per & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2012. "Local polynomial Whittle estimation of perturbed fractional processes," Journal of Econometrics, Elsevier, pages 426-447.
    4. repec:rss:jnljef:v4i4p4 is not listed on IDEAS
    5. Neely, Christopher J., 2009. "Forecasting foreign exchange volatility: Why is implied volatility biased and inefficient? And does it matter?," Journal of International Financial Markets, Institutions and Money, Elsevier, pages 188-205.
    6. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005. "Estimating Long Memory in Volatility," Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, July.
    7. Zaffaroni, Paolo & d'Italia, Banca, 2003. "Gaussian inference on certain long-range dependent volatility models," Journal of Econometrics, Elsevier, vol. 115(2), pages 199-258, August.
    8. Dalla, Violetta, 2015. "Power transformations of absolute returns and long memory estimation," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 1-18.
    9. Christopher J. Neely, 2004. "Implied volatility from options on gold futures: do statistical forecasts add value or simply paint the lilly?," Working Papers 2003-018, Federal Reserve Bank of St. Louis.
    10. Avci-Surucu, Ezgi & Aydogan, A. Kursat & Akgul, Doganbey, 2016. "Bidding structure, market efficiency and persistence in a multi-time tariff setting," Energy Economics, Elsevier, vol. 54(C), pages 77-87.
    11. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Long memory volatility in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1425-1433.
    12. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.

    More about this item

    Keywords

    Rate of return ; Time-series analysis;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgif:685. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Franz Osorio). General contact details of provider: http://edirc.repec.org/data/frbgvus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.