IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/2022.html
   My bibliography  Save this paper

Long and short memory conditional heteroscedasticity in estimating the memory parameter of levels

Author

Listed:
  • Robinson, Peter M.
  • Henry, Marc

Abstract

Semiparametric estimates of long memory seem useful in the analysis of long financial time series because they are consistent under much broader conditions than parametric estimates. However, recent large sample theory for semiparametric estimates forbids conditional heteroscedasticity. We show that a leading semiparametric estimate, the Gaussian or local Whittle one, can be consistent and have the same limiting distribution under conditional heteroscedasticity as under conditional homoscedasticity assumed by Robinson (1995a). Indeed, noting that long memory has been observed in the squares of financial time series, we allow, under regularity conditions, for conditional heteroscedasticity of the general form introduced by Robinson (1991) which may include long memory behaviour for the squares, such as the fractional noise and autoregressive fractionally integrated moving average form, as well as standard short memory ARCH and GARCH specifications.

Suggested Citation

  • Robinson, Peter M. & Henry, Marc, 1998. "Long and short memory conditional heteroscedasticity in estimating the memory parameter of levels," LSE Research Online Documents on Economics 2022, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:2022
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/2022/
    File Function: Open access version.
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606.
    2. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
    3. Guido M. Kuersteiner, 1999. "Efficiency IV Estimation for Autoregressive Models with Conditional Heterogeneity," Working papers 99-08, Massachusetts Institute of Technology (MIT), Department of Economics.
    4. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(01), pages 107-131, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    long memory; dynamic conditional heteroscedasticity; semiparametric estimation.;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:2022. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (LSERO Manager). General contact details of provider: http://edirc.repec.org/data/lsepsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.