IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0301003.html
   My bibliography  Save this paper

Overlaying Time Scales and Persistence Estimation in GARCH(1,1) Models

Author

Listed:
  • Eric Hillebrand

    (Stanford University)

Abstract

A common finding in the empirical literature is that financial volatility exhibits high persistence, or slow mean reversion of the order of months. We present evidence that financial volatility data contains more than a single time scale. After showing that the expectation of the sum of the estimates of the autoregressive coefficients of a GARCH(1,1) model is one when there are unknown parameter changes, we explore the phenomenon in simulations. For parameter changes within realistic ranges for stock-price volatility we obtain global estimates close to integration while the average data- generating mean reversion is of the order of a few days. Spectral analysis of the Dow Jones Industrial Average and the S&P500 index between 1985 and 2001 reveals a short time scale of the magnitude of 5- 10 days present in the data. Thus, two different time scales exist in the data, one of the order of months corresponding to different volatility regimes, and one of the order of days corresponding to the average mean reversion within regimes.

Suggested Citation

  • Eric Hillebrand, 2003. "Overlaying Time Scales and Persistence Estimation in GARCH(1,1) Models," Econometrics 0301003, EconWPA.
  • Handle: RePEc:wpa:wuwpem:0301003
    Note: Type of Document - Tex; prepared on IBM PC; to print on HP/PostScript; pages: 27 ; figures: included. pdf-file.
    as

    Download full text from publisher

    File URL: http://econwpa.repec.org/eps/em/papers/0301/0301003.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    2. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    3. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
    4. Granger, Clive W. J. & Terasvirta, Timo, 1999. "A simple nonlinear time series model with misleading linear properties," Economics Letters, Elsevier, vol. 62(2), pages 161-165, February.
    5. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    6. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    7. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    8. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Harvey, A C, 1976. "Estimating Regression Models with Multiplicative Heteroscedasticity," Econometrica, Econometric Society, vol. 44(3), pages 461-465, May.
    11. Thomas Mikosch & Catalin Starica, 2004. "Long range dependence effects and ARCH modelling," Econometrics 0412004, EconWPA.
    12. B. B. Mandelbrot, 2001. "Stochastic volatility, power laws and long memory," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 558-559.
    13. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    14. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    15. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-234, April.
    16. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    17. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(01), pages 107-131, April.
    18. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    19. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
    20. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthew Lorig, 2010. "Time-Changed Fast Mean-Reverting Stochastic Volatility Models," Papers 1010.5203, arXiv.org, revised Apr 2012.
    2. Jean-Pierre Fouque & Matthew Lorig, 2010. "A Fast Mean-Reverting Correction to Heston's Stochastic Volatility Model," Papers 1007.4366, arXiv.org, revised Apr 2012.

    More about this item

    Keywords

    GARCH; volatility persistence; regime switching; long memory; short memory; structural change;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0301003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: http://econwpa.repec.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.