IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Regime-Switching and the Estimation of Multifractal Processes

  • Laurent Calvet
  • Adlai Fisher

We propose a discrete-time stochastic volatility model in which regime switching serves three purposes. First, changes in regimes capture low frequency variations, which is their traditional role. Second, they specify intermediate frequency dynamics that are usually assigned to smooth autoregressive processes. Finally, high frequency switches generate substantial outliers. Thus, a single mechanism captures three important features of the data that are typically addressed as distinct phenomena in the literature. Maximum likelihood estimation is developed and shown to perform well in finite sample. We estimate on exchange rate data a version of the process with four parameters and more than a thousand states. The estimated model compares favorably to earlier specifications both in- and out-of-sample. Multifractal forecasts slightly improve on GARCH(1,1) at daily and weekly intervals, and provide considerable gains in accuracy at horizons of 10 to 50 days.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by National Bureau of Economic Research, Inc in its series NBER Working Papers with number 9839.

in new window

Date of creation: Jul 2003
Date of revision:
Publication status: published as Calvet, Laurent E. and Adlai J. Fisher. "How To Forecast Long-Run Volatility: Regime Switching And The Estimation Of Multifractal Processes," Journal of Financial Econometrics, 2004, v2(1,Winter), 49-83.
Handle: RePEc:nbr:nberwo:9839
Note: EFG
Contact details of provider: Postal: National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.
Phone: 617-868-3900
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Hamilton, James D & Perez-Quiros, Gabriel, 1996. "What Do the Leading Indicators Lead?," The Journal of Business, University of Chicago Press, vol. 69(1), pages 27-49, January.
  2. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
  3. Bollen, Nicolas P. B. & Gray, Stephen F. & Whaley, Robert E., 2000. "Regime switching in foreign exchange rates: Evidence from currency option prices," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 239-276.
  4. John M. Maheu & Tom McCurdy, 2000. "Volatility Dynamics Under Duration-Dependent Mixing," Econometric Society World Congress 2000 Contributed Papers 1427, Econometric Society.
  5. I.N. Lobato & N.E. Savin, 1996. "Real and Spurious Long Memory Properties of Stock Market Data," Econometrics 9605004, EconWPA, revised 26 Sep 1996.
  6. Andrew J. Filardo, 1993. "Business cycle phases and their transitional dynamics," Research Working Paper 93-14, Federal Reserve Bank of Kansas City.
  7. Dacorogna, Michael M. & Muller, Ulrich A. & Nagler, Robert J. & Olsen, Richard B. & Pictet, Olivier V., 1993. "A geographical model for the daily and weekly seasonal volatility in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 12(4), pages 413-438, August.
  8. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
  9. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-58, May.
  10. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
  11. Newey, W.K. & West, K.D., 1992. "Automatic Lag Selection in Covariance Matrix Estimation," Working papers 9220, Wisconsin Madison - Social Systems.
  12. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-33, March.
  13. B. B. Mandelbrot, 2001. "Stochastic volatility, power laws and long memory," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 558-559.
  14. Hidalgo, Javier & Robinson, Peter M., 1996. "Testing for structural change in a long-memory environment," Journal of Econometrics, Elsevier, vol. 70(1), pages 159-174, January.
  15. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  16. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-47, August.
  17. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
  18. Kenneth D. West & Michael W. McCracken, 1998. "Regression-Based Tests of Predictive Ability," NBER Technical Working Papers 0226, National Bureau of Economic Research, Inc.
  19. Laurent Calvet & Adlai Fisher, 1999. "Forecasting Multifractal Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-017, New York University, Leonard N. Stern School of Business-.
  20. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
  21. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2004. "Analytical Evaluation Of Volatility Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(4), pages 1079-1110, November.
  22. René Garcia, 1995. "Asymptotic Null Distribution of the Likelihood Ratio Test in Markov Switching Models," CIRANO Working Papers 95s-07, CIRANO.
  23. Allan Timmermann & Gabriel Perez-Quiros, 1999. "Firm Size and Cyclical Variations in Stock Returns," FMG Discussion Papers dp335, Financial Markets Group.
  24. B. LeBaron, 2001. "Stochastic volatility as a simple generator of apparent financial power laws and long memory," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 621-631.
  25. James D. Hamilton & Baldev Raj, 2002. "New directions in business cycle research and financial analysis," Empirical Economics, Springer, vol. 27(2), pages 149-162.
  26. West, K.D. & Cho, D., 1993. "The Predictive Ability of Several Models of Exchange Rate Volatility," Working papers 9317, Wisconsin Madison - Social Systems.
  27. Hamilton, James D & Gang, Lin, 1996. "Stock Market Volatility and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 573-93, Sept.-Oct.
  28. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
  29. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  30. Garcia, R. & Perron, P., 1994. "An Analysis of the Real Interest rate Under Regime Shifts," Cahiers de recherche 9428, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  31. J. Michael Durland & Thomas H. McCurdy, 1993. "Duration Dependent Transitions in a Markov Model of U.S. GNP Growth," Working Papers 887, Queen's University, Department of Economics.
  32. Asger Lunde & Peter Reinhard Hansen, 2001. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?," Working Papers 2001-04, Brown University, Department of Economics.
  33. Akgiray, Vedat, 1989. "Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts," The Journal of Business, University of Chicago Press, vol. 62(1), pages 55-80, January.
  34. Laurent Calvet & Adlai Fisher, 2002. "Multifractality In Asset Returns: Theory And Evidence," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
  35. Hamilton, James D., 1988. "Rational-expectations econometric analysis of changes in regime : An investigation of the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 385-423.
  36. Francis X. Diebold & Atsushi Inoue, 2000. "Long Memory and Regime Switching," NBER Technical Working Papers 0264, National Bureau of Economic Research, Inc.
  37. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
  38. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-66, July.
  39. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
  40. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, June.
  41. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
  42. Douglas Rivers & Quang Vuong, 2002. "Model selection tests for nonlinear dynamic models," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 1-39, June.
  43. Thomas Lux, 2001. "The Multi-Fractal Model of Asset Returns: Simple Moment and GMM Estimation," Computing in Economics and Finance 2001 62, Society for Computational Economics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:9839. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.