IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

The Multi-Fractal Model of Asset Returns:Its Estimation via GMM and Its Use for Volatility Forecasting

  • Thomas Lux

Multi-fractal processes have been proposed as a new formalism for modeling the time series of returns in finance. The major attraction of these processes is their ability to generate various degrees of long memory in different powers of returns - a feature that has been found to characterize virtually all financial prices. Furthermore, elementary variants of multi-fractal models are very parsimonious formalizations as they are essentially one-parameter families of stochastic processes. The aim of this paper is to provide the characteristics of a causal multi-fractal model (replacing the earlier combinatorial approaches discussed in the literature), to estimate the parameters of this model and to use these estimates in forecasting financial volatility. We use the auto-covariances of log increments of the multi-fractal process in order to estimate its parameters consistently via GMM (Generalized Method of Moment). Simulations show that this approach leads to essentially unbiased estimates, which also have much smaller root mean squared errors than those obtained from the traditional ?scaling? approach. Our empirical estimates are used in out-of-sample forecasting of volatility for a number of important financial assets. Comparing the multi-fractal forecasts with those derived from GARCH and FIGARCH models yields results in favor of the new model: multi-fractal forecasts dominate all other forecasts in one out of four cases considered, while in the remaining cases they are head to head with one or more of their competitors.

(This abstract was borrowed from another version of this item.)

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2003 with number 14.

as
in new window

Length:
Date of creation: 01 Aug 2003
Date of revision:
Handle: RePEc:sce:scecf3:14
Contact details of provider: Web page: http://comp-econ.org/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-68, July.
  2. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  3. Laurent Calvet & Adlai Fisher, 1999. "Forecasting Multifractal Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-017, New York University, Leonard N. Stern School of Business-.
  4. Torben G. Andersen & Bent E. Sorensen, 1995. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Discussion Papers 95-19, University of Copenhagen. Department of Economics.
  5. Andrew W. Lo, 1989. "Long-term Memory in Stock Market Prices," NBER Working Papers 2984, National Bureau of Economic Research, Inc.
  6. Torben G. Andersen & Tim Bollerslev, 1996. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," NBER Working Papers 5752, National Bureau of Economic Research, Inc.
  7. Terence Mills, 1997. "Stylized facts on the temporal and distributional properties of daily FT-SE returns," Applied Financial Economics, Taylor & Francis Journals, vol. 7(6), pages 599-604.
  8. Thomas Lux, 1996. "Long-term stochastic dependence in financial prices: evidence from the German stock market," Applied Economics Letters, Taylor & Francis Journals, vol. 3(11), pages 701-706.
  9. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
  10. Adlai Fisher & Laurent Calvet & Benoit Mandelbrot, 1997. "Multifractality of Deutschemark/US Dollar Exchange Rates," Cowles Foundation Discussion Papers 1166, Cowles Foundation for Research in Economics, Yale University.
  11. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
  12. Laurent Calvet & Adlai Fisher, 2003. "Regime-Switching and the Estimation of Multifractal Processes," Harvard Institute of Economic Research Working Papers 1999, Harvard - Institute of Economic Research.
  13. Laurent Calvet & Adlai Fisher & Benoit Mandelbrot, 1999. "A Multifractal Model of Assets Returns," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-072, New York University, Leonard N. Stern School of Business-.
  14. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-80, July.
  15. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
  16. Laurent Calvet & Adlai Fisher, 2002. "Multifractality In Asset Returns: Theory And Evidence," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
  17. Goetzmann, William Nelson, 1993. "Patterns in Three Centuries of Stock Market Prices," The Journal of Business, University of Chicago Press, vol. 66(2), pages 249-70, April.
  18. J-F. Muzy & D. Sornette & J. delour & A. Arneodo, 2001. "Multifractal returns and hierarchical portfolio theory," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 131-148.
  19. Vilasuso, Jon, 2002. "Forecasting exchange rate volatility," Economics Letters, Elsevier, vol. 76(1), pages 59-64, June.
  20. T. Lux, 2001. "Turbulence in financial markets: the surprising explanatory power of simple cascade models," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 632-640.
  21. Brockwell, P. J. & Dahlhaus, R., 2004. "Generalized Levinson-Durbin and Burg algorithms," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 129-149.
  22. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:sce:scecf3:14. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.