IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v26y2008p194-210.html
   My bibliography  Save this article

The Markov-Switching Multifractal Model of Asset Returns: GMM Estimation and Linear Forecasting of Volatility

Author

Listed:
  • Lux, Thomas

Abstract

Multi-fractal processes have recently been proposed as a new formalism for modelling the time series of returns in finance. The major attraction of these processes is their ability to generate various degrees of long memory in different powers of returns - a feature that has been found in virtually all financial data. Initial difficulties stemming from non-stationarity and the combinatorial nature of the original model have been overcome by the introduction of an iterative Markov-switching multi-fractal model in Calvet and Fisher (2001) which allows for estimation of its parameters via maximum likelihood and Bayesian forecasting of volatility. However, applicability of MLE is restricted to cases with a discrete distribution of volatility components. From a practical point of view, ML also becomes computationally unfeasible for large numbers of components even if they are drawn from a discrete distribution. Here we propose an alternative GMM estimator together with linear forecasts which in principle is applicable for any continuous distribution with any number of volatility components. Monte Carlo studies show that GMM performs reasonably well for the popular Binomial and Lognormal models and that the loss incured with linear compared to optimal forecasts is small. Extending the number of volatility components beyond what is feasible with MLE leads to gains in forecasting accuracy for some time series.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Lux, Thomas, 2008. "The Markov-Switching Multifractal Model of Asset Returns: GMM Estimation and Linear Forecasting of Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 194-210, April.
  • Handle: RePEc:bes:jnlbes:v:26:y:2008:p:194-210
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jbes/2008/00000026/00000002/art00005
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Calvet, Laurent E. & Fisher, Adlai J. & Thompson, Samuel B., 2006. "Volatility comovement: a multifrequency approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 179-215.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Calvet, Laurent & Fisher, Adlai, 2001. "Forecasting multifractal volatility," Journal of Econometrics, Elsevier, vol. 105(1), pages 27-58, November.
    4. Laurent Calvet & Adlai Fisher, 2003. "Regime-Switching and the Estimation of Multifractal Processes," NBER Working Papers 9839, National Bureau of Economic Research, Inc.
    5. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    6. Vilasuso, Jon, 2002. "Forecasting exchange rate volatility," Economics Letters, Elsevier, vol. 76(1), pages 59-64, June.
    7. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    8. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    9. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    10. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    11. Laurent Calvet & Adlai Fisher, 2002. "Multifractality In Asset Returns: Theory And Evidence," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
    12. Andersen, Torben G & Bollerslev, Tim, 1997. " Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    13. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    14. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    15. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    16. Gilles Zumbach, 2004. "Volatility processes and volatility forecast with long memory," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 70-86.
    17. Brockwell, P. J. & Dahlhaus, R., 2004. "Generalized Levinson-Durbin and Burg algorithms," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 129-149.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:26:y:2008:p:194-210. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.