IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00459667.html

Volatility Comovement: a multifrequency approach

Author

Listed:
  • Laurent-Emmanuel Calvet

    (GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique)

  • Adlai J. Fisher
  • Samuel B. Thompson

Abstract

We implement a multifrequency volatility decomposition of three exchange rates and show that components with similar durations are strongly correlated across series. This motivates a bivariate extension of the Markov-Switching Multifractal (MSM) introduced in Calvet and Fisher (J. Econ. 105 (2001) 27, J. Financ. Econ. 2 (2004) 49). Bivariate MSM is a stochastic volatility model with a closed-form likelihood. Estimation can proceed by maximum likelihood for state spaces of moderate size, and by simulated likelihood via a particle filter in high-dimensional cases. We estimate the model and confirm its main assumptions in likelihood ratio tests. Bivariate MSM compares favorably to a standard multivariate GARCH both in- and out-of-sample. A parsimonious multifrequency factor structure is finally proposed for multivariate settings with potentially many assets.

Suggested Citation

  • Laurent-Emmanuel Calvet & Adlai J. Fisher & Samuel B. Thompson, 2006. "Volatility Comovement: a multifrequency approach," Post-Print hal-00459667, HAL.
  • Handle: RePEc:hal:journl:hal-00459667
    DOI: 10.1016/j.jeconom.2005.01.008
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00459667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.