IDEAS home Printed from
   My bibliography  Save this paper

Asymptotic Null Distribution of the Likelihood Ratio Test in Markov Switching Models


  • René Garcia


The Markov Switching Model, introduced by Hamilton (1988, 1989), has been used in various economic and financial applications where changes in regime play potentially an important role. While estimation methods for these models are by now well established, such is not the case for the corresponding testing procedures. The Markov switching models raise a special problem known in the statistics literature as testing hypotheses in models where a nuisance parameter is not identified under the null hypothesis. In these circumstances, the asymptotic distributions of the usual tests (likelihood ratio, Lagrange multiplier, Wald tests) are non-standard. In this paper, we show that, if we treat the transition probabilities as nuisance parameters in a Markov switching model and set the null hypothesis in terms uniquely of the parameters governed by the Markov variable, the distributional theory proposed by Hansen (1991a) is applicable to Markov switching models under certain assumptions. Based on this framework, we derive analytically, in the context of two-state Markov switching models, the asymptotic null distribution of the likelihood ratio test (which is shown to be also valid for the Lagrange multiplier and Wald tests under certain conditions) and the related covariance functions. Monte Carlo simulations show that the asymptotic distributions offer a very good approximation to the corresponding empirical distributions. Les modèles à changements de régime markoviens soulèvent un problème particulier connu dans la littérature statistique sous la rubrique des tests d'hypothèse dans les modèles où un paramètre de nuisance n'est pas identifié sous l'hypothèse nulle. Dans ces cas, les distributions asymptotiques des tests usuels (ratio de vraisemblance, multiplicateur de Lagrange, Wald) ne sont pas standard. Dans le présent article, nous montrons que, si nous traitons les probabilités de transition comme des paramètres de nuisance dans un modèle à changements de régime markoviens et fixons l'hypothèse nulle uniquement en fonction des paramètres régis par la variable de Markov, la théorie distributionnelle proposée par Hansen (1991) est applicable aux modèles à changements de régime markoviens sous certaines hypothèses. Dans ce cadre, nous dérivons analytiquement la distribution asymptotique du ratio de vraisemblance sous l'hypothèse nulle ainsi que les fonctions de covariance correspondantes pour divers modèles à changements de régime markoviens : un modèle à 2 moyennes avec erreurs non corrélées et homoscédastiques; un modèle à 2 moyennes avec des erreurs suivant un processus AR(r) ; et finalement un modèle à 2 moyennes et 2 variances avec des erreurs non corrélées. Dans les trois cas, des expériences de Monte Carlo montrent que les distributions asymptotiques dérivées offrent une très bonne approximation de la distribution empirique. La dérivation de la distribution asymptotique de la statistique du ratio de vraisemblance pour ces trois modèles simples markoviens à 2 états sera utile pour évaluer la signification statistique des résultats qui sont apparus dans la littérature et plus généralement pour offrir un ensemble de valeurs critiques aux chercheurs futurs dans ce domaine. Les valeurs critiques de la distribution asymptotique du test du ratio de vraisemblance dans les modèles à changements de régime markoviens sont considérablement plus élevées que les valeurs critiques impliquées par la distribution chi-carré standard.

Suggested Citation

  • René Garcia, 1995. "Asymptotic Null Distribution of the Likelihood Ratio Test in Markov Switching Models," CIRANO Working Papers 95s-07, CIRANO.
  • Handle: RePEc:cir:cirwor:95s-07

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    2. Davidson, Russell & MacKinnon, James G, 1981. "Several Tests for Model Specification in the Presence of Alternative Hypotheses," Econometrica, Econometric Society, vol. 49(3), pages 781-793, May.
    3. Turner, Christopher M. & Startz, Richard & Nelson, Charles R., 1989. "A Markov model of heteroskedasticity, risk, and learning in the stock market," Journal of Financial Economics, Elsevier, vol. 25(1), pages 3-22, November.
    4. Cecchetti, Stephen G & Lam, Pok-sang & Mark, Nelson C, 1990. "Mean Reversion in Equilibrium Asset Prices," American Economic Review, American Economic Association, vol. 80(3), pages 398-418, June.
    5. Garcia, Rene & Perron, Pierre, 1996. "An Analysis of the Real Interest Rate under Regime Shifts," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 111-125, February.
    6. Donald W.K. Andrews & Werner Ploberger, 1993. "Admissibility of the Likelihood Ratio Test When a Nuisance Parameter Is Present OnlyUnder the Alternative," Cowles Foundation Discussion Papers 1058, Cowles Foundation for Research in Economics, Yale University.
    7. Robert B. Davies, 2002. "Hypothesis testing when a nuisance parameter is present only under the alternative: Linear model case," Biometrika, Biometrika Trust, vol. 89(2), pages 484-489, June.
    8. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    9. Hamilton, James D., 1988. "Rational-expectations econometric analysis of changes in regime : An investigation of the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 385-423.
    10. Engel, Charles & Hamilton, James D, 1990. "Long Swings in the Dollar: Are They in the Data and Do Markets Know It?," American Economic Review, American Economic Association, vol. 80(4), pages 689-713, September.
    11. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    12. Hamilton, James D., 1996. "Specification testing in Markov-switching time-series models," Journal of Econometrics, Elsevier, vol. 70(1), pages 127-157, January.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Markov switching models ; Transition probabilities; Null hypothesis; Modèles à changements de régime markoviens ; Probabilités de transition ; Hypothèse nulle;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:95s-07. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.