IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00591678.html

Multifrequency News and Stock Returns

Author

Listed:
  • Laurent-Emmanuel Calvet

    (GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique, NBER - The National Bureau of Economic Research)

  • Adlai J. Fisher

    (Sauder - Sauder School of Business [British Columbia] - UBC - University of British Columbia [Canada])

Abstract

Recent research documents that aggregate stock prices are driven by shocks with persistence levels ranging from daily intervals to several decades. Building on these insights, we introduce a parsimonious equilibrium model in which regime-shifts of heterogeneous durations affect the volatility of dividend news. We estimate tightly parameterized specifications with up to 256 discrete states on daily U.S. equity returns. The multifrequency equilibrium has significantly higher likelihood than the classic Campbell and Hentschel (1992) specification, while generating volatility feedback effects 6 to 12 times larger. We show in an extension that Bayesian learning about stochastic volatility is faster for bad states than good states, providing a novel source of endogenous skewness that complements the "uncertainty" channel considered in previous literature (e.g., Veronesi, 1999). Furthermore, signal precision induces a tradeoff between skewness and kurtosis, and economies with intermediate investor information best match the data.

Suggested Citation

  • Laurent-Emmanuel Calvet & Adlai J. Fisher, 2011. "Multifrequency News and Stock Returns," Working Papers hal-00591678, HAL.
  • Handle: RePEc:hal:wpaper:hal-00591678
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00591678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.