IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Volatility dynamics under duration-dependent mixing

  • Maheu, John M.
  • McCurdy, Thomas H.

This paper proposes a new approach to modeling volatility changes and clustering. In particular, we use a parsimonious high-order Markov chain which allows for duration dependence. As in the standard 1st-order Markov-switching model, this structure can capture turning points and shifts in volatility due, for example, to policy changes or news events. However, unlike the 1st-order model, the duration-dependent Markov switching model is suited to exploiting the persistence associated with volatility clustering. To highlight the features of our model, we compare it to a popular benchmark, the GARCH model. Unlike the latter, the proposed parameterization allows time-varying persistence, includes a stochastic component for volatility, and incorporates anticipated discrete changes in the level of volatility. The empirical distribution generated by our proposed structure works well for the samples of data used in this paper. Implications for forecasts relevant for risk management are emphasized.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6VFG-41T18WW-6/2/60f9b37c89636f66d7180a634ce755e2
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Empirical Finance.

Volume (Year): 7 (2000)
Issue (Month): 3-4 (November)
Pages: 345-372

as
in new window

Handle: RePEc:eee:empfin:v:7:y:2000:i:3-4:p:345-372
Contact details of provider: Web page: http://www.elsevier.com/locate/jempfin

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Vlaar, Peter J G & Palm, Franz C, 1993. "The Message in Weekly Exchange Rates in the European Monetary System: Mean Reversion, Conditional Heteroscedasticity, and Jumps," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 351-60, July.
  2. Engel, Charles & Hamilton, James D, 1990. "Long Swings in the Dollar: Are They in the Data and Do Markets Know It?," American Economic Review, American Economic Association, vol. 80(4), pages 689-713, September.
  3. Kim, Chang-Jin & Nelson, Charles R. & Startz, Richard, 1998. "Testing for mean reversion in heteroskedastic data based on Gibbs-sampling-augmented randomization1," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 131-154, June.
  4. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
  5. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  6. West, K.D. & Cho, D., 1993. "The Predictive Ability of Several Models of Exchange Rate Volatility," Working papers 9317r, Wisconsin Madison - Social Systems.
  7. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
  8. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
  9. Hamilton, James D., 1988. "Rational-expectations econometric analysis of changes in regime : An investigation of the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 385-423.
  10. Maheu, John M & McCurdy, Thomas H, 2000. "Identifying Bull and Bear Markets in Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 100-112, January.
  11. Nieuwland, Frederick G M C & Verschoor, Willem F C & Wolff, Christian C P, 1994. "Stochastic trends and jumps in EMS exchange rates," Journal of International Money and Finance, Elsevier, vol. 13(6), pages 699-727, December.
  12. Chatfield, Chris, 1993. "Calculating Interval Forecasts: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 143-44, April.
  13. J. Michael Durland & Thomas H. McCurdy, 1993. "Duration Dependent Transitions in a Markov Model of U.S. GNP Growth," Working Papers 887, Queen's University, Department of Economics.
  14. Ghysels, E. & Harvey, A. & Renault, E., 1996. "Stochastic Volatility," Cahiers de recherche 9613, Universite de Montreal, Departement de sciences economiques.
  15. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
  16. Kaehler, Jürgen & Marnet, Volker, 1993. "Markov-switching models for exchange-rate dynamics and the pricing of foreign-currency options," ZEW Discussion Papers 93-03, ZEW - Zentrum für Europäische Wirtschaftsforschung / Center for European Economic Research.
  17. Chang-Jin Kim & Charles R. Nelson, 1998. "Business Cycle Turning Points, A New Coincident Index, And Tests Of Duration Dependence Based On A Dynamic Factor Model With Regime Switching," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 188-201, May.
  18. Rydén, Tobias & Teräsvirta, Timo & Åsbrink, Stefan, 1996. "Stylized Facts of Daily Return Series and the Hidden Markov Model," SSE/EFI Working Paper Series in Economics and Finance 117, Stockholm School of Economics.
  19. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-83, November.
  20. Andrew J. Filardo, 1993. "Business cycle phases and their transitional dynamics," Research Working Paper 93-14, Federal Reserve Bank of Kansas City.
  21. Gabriel Perez-Quiros & Allan Timmermann, 2000. "Firm Size and Cyclical Variations in Stock Returns," Journal of Finance, American Finance Association, vol. 55(3), pages 1229-1262, 06.
  22. Pok-san Lam, 1997. "A Markov switching model of GNP growth with duration dependence," Discussion Paper / Institute for Empirical Macroeconomics 124, Federal Reserve Bank of Minneapolis.
  23. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
  24. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  25. Allan Timmermann, 1999. "Moments of Markov Switching Models," FMG Discussion Papers dp323, Financial Markets Group.
  26. Chatfield, Chris, 1993. "Calculating Interval Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 121-35, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:7:y:2000:i:3-4:p:345-372. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.