IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1007.4366.html
   My bibliography  Save this paper

A Fast Mean-Reverting Correction to Heston's Stochastic Volatility Model

Author

Listed:
  • Jean-Pierre Fouque
  • Matthew Lorig

Abstract

We propose a multi-scale stochastic volatility model in which a fast mean-reverting factor of volatility is built on top of the Heston stochastic volatility model. A singular pertubative expansion is then used to obtain an approximation for European option prices. The resulting pricing formulas are semi-analytic, in the sense that they can be expressed as integrals. Difficulties associated with the numerical evaluation of these integrals are discussed, and techniques for avoiding these difficulties are provided. Overall, it is shown that computational complexity for our model is comparable to the case of a pure Heston model, but our correction brings significant flexibility in terms of fitting to the implied volatility surface. This is illustrated numerically and with option data.

Suggested Citation

  • Jean-Pierre Fouque & Matthew Lorig, 2010. "A Fast Mean-Reverting Correction to Heston's Stochastic Volatility Model," Papers 1007.4366, arXiv.org, revised Apr 2012.
  • Handle: RePEc:arx:papers:1007.4366
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1007.4366
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    2. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
    3. Fiorentini, Gabriele & Leon, Angel & Rubio, Gonzalo, 2002. "Estimation and empirical performance of Heston's stochastic volatility model: the case of a thinly traded market," Journal of Empirical Finance, Elsevier, vol. 9(2), pages 225-255, March.
    4. Peter Cotton & Jean‐Pierre Fouque & George Papanicolaou & Ronnie Sircar, 2004. "Stochastic Volatility Corrections for Interest Rate Derivatives," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 173-200, April.
    5. Eric Hillebrand, 2003. "Overlaying Time Scales and Persistence Estimation in GARCH(1,1) Models," Econometrics 0301003, University Library of Munich, Germany.
    6. Roger Lord & Christian Kahl, 2006. "Why the Rotation Count Algorithm works," Tinbergen Institute Discussion Papers 06-065/2, Tinbergen Institute.
    7. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew Lorig, 2010. "Time-Changed Fast Mean-Reverting Stochastic Volatility Models," Papers 1010.5203, arXiv.org, revised Apr 2012.
    2. Wong, Hoi Ying & Chan, Chun Man, 2007. "Lookback options and dynamic fund protection under multiscale stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 357-385, May.
    3. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    4. Paola Zerilli, 2005. "Option pricing and spikes in volatility: theoretical and empirical analysis," Money Macro and Finance (MMF) Research Group Conference 2005 76, Money Macro and Finance Research Group.
    5. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    6. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    7. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    8. Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.
    9. Siddiqi, Hammad, 2015. "Anchoring Heuristic in Option Pricing," MPRA Paper 63218, University Library of Munich, Germany.
    10. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    11. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
    12. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    13. Siddiqi, Hammad, 2014. "Anchoring Heuristic in Option Prices," MPRA Paper 66018, University Library of Munich, Germany, revised 15 Jul 2015.
    14. Siddiqi, Hammad, 2014. "Analogy Making and the Structure of Implied Volatility Skew," MPRA Paper 60921, University Library of Munich, Germany.
    15. In Kim & In-Seok Baek & Jaesun Noh & Sol Kim, 2007. "The role of stochastic volatility and return jumps: reproducing volatility and higher moments in the KOSPI 200 returns dynamics," Review of Quantitative Finance and Accounting, Springer, vol. 29(1), pages 69-110, July.
    16. Cheng, Ai-ru (Meg) & Gallant, A. Ronald & Ji, Chuanshu & Lee, Beom S., 2008. "A Gaussian approximation scheme for computation of option prices in stochastic volatility models," Journal of Econometrics, Elsevier, vol. 146(1), pages 44-58, September.
    17. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
    18. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    19. Siddiqi, Hammad, 2015. "Anchoring and Adjustment Heuristic in Option Pricing," MPRA Paper 68595, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1007.4366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.