IDEAS home Printed from https://ideas.repec.org/p/ibr/dpaper/2012-02.html
   My bibliography  Save this paper

A Hybrid Data Cloning Maximum Likelihood Estimator for Stochastic Volatility Models

Author

Listed:
  • Márcio Laurini

    (IBMEC Business School)

Abstract

In this paper we analyze a maximum likelihood estimator using data cloning for stochastic volatility models.This estimator is constructed using a hybrid methodology based on Integrated Nested Laplace Approximations to calculate analytically the auxiliary Bayesian estimators with great accuracy and computational efficiency, without requiring the use of simulation methods as Markov Chain Monte Carlo. We analyze the performance of this estimator compared to methods based in Monte Carlo simulations (Simulated Maximum Likelihood, MCMC Maximum Likelihood) and approximate maximum likelihood estimators using Laplace Approximations. The results indicate that this data cloning methodology achieves superior results over methods based on MCMC, and comparable to results obtained by the Simulated Maximum Likelihood estimator.

Suggested Citation

  • Márcio Laurini, 2012. "A Hybrid Data Cloning Maximum Likelihood Estimator for Stochastic Volatility Models," IBMEC RJ Economics Discussion Papers 2012-02, Economics Research Group, IBMEC Business School - Rio de Janeiro.
  • Handle: RePEc:ibr:dpaper:2012-02
    as

    Download full text from publisher

    File URL: http://professores.ibmecrj.br/erg/dp/papers/dp201202.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Koopman, Siem Jan & Mallee, Max I. P. & Van der Wel, Michel, 2010. "Analyzing the Term Structure of Interest Rates Using the Dynamic Nelson–Siegel Model With Time-Varying Parameters," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 329-343.
    2. Rolf Poulsen & Klaus Reiner Schenk-Hoppe & Christian-Oliver Ewald, 2009. "Risk minimization in stochastic volatility models: model risk and empirical performance," Quantitative Finance, Taylor & Francis Journals, vol. 9(6), pages 693-704.
    3. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    6. Victor Chernozhukov & Han Hong, 2004. "Likelihood Estimation and Inference in a Class of Nonregular Econometric Models," Econometrica, Econometric Society, vol. 72(5), pages 1445-1480, September.
    7. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    8. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Stochastic Volatility: Data Cloning; Maximum Likelihood; MCMC; Laplace Approximations.;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibr:dpaper:2012-02. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Márcio Laurini). General contact details of provider: http://edirc.repec.org/data/ibmrjbr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.