IDEAS home Printed from
   My bibliography  Save this article

Fitting Nonlinear Time-Series Models with Applications to Stochastic Variance Models


  • Shephard, Neil


New strategies for the implementation of maximum likelihood estimation of nonlinear time series models are suggested. They make use of recent work on the EM algorithm and iterative simulation techniques. The estimation procedures are applied to the problem of fitting stochastic variance models to exchange rate data. Copyright 1993 by John Wiley & Sons, Ltd.

Suggested Citation

  • Shephard, Neil, 1993. "Fitting Nonlinear Time-Series Models with Applications to Stochastic Variance Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 135-152, Suppl. De.
  • Handle: RePEc:jae:japmet:v:8:y:1993:i:s:p:s135-52

    Download full text from publisher

    File URL:
    File Function: full text
    Download Restriction: Access to full text is restricted to JSTOR subscribers. See for details.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Scheinkman, Jose A & LeBaron, Blake, 1989. "Nonlinear Dynamics and Stock Returns," The Journal of Business, University of Chicago Press, vol. 62(3), pages 311-337, July.
    2. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    3. Brock, William A. & Sayers, Chera L., 1988. "Is the business cycle characterized by deterministic chaos?," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 71-90, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    2. Avouyi-Dovi, S. & Horny, G. & Sevestre, P., 2017. "The stability of short-term interest rates pass-through in the euro area during the financial market and sovereign debt crises," Journal of Banking & Finance, Elsevier, vol. 79(C), pages 74-94.
    3. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. K. Triantafyllopoulos, 2008. "Multivariate stochastic volatility with Bayesian dynamic linear models," Papers 0802.0214,
    5. Gabriele Fiorentini & Enrique Sentana & Neil Shephard, 2004. "Likelihood-Based Estimation of Latent Generalized ARCH Structures," Econometrica, Econometric Society, vol. 72(5), pages 1481-1517, September.
    6. Sangjoon Kim, Neil Shephard & Siddhartha Chib, "undated". "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers W26, revised version of W, Economics Group, Nuffield College, University of Oxford.
    7. Avouyi-Dovi, S. & Horny, G. & Sevestre, P., 2013. "The dynamics of bank loans short-term interest rates in the Euro area: what lessons can we draw from the current crisis?," Working papers 462, Banque de France.
    8. Joel Hasbrouck, 1998. "Liquidity in the Futures Pits: Inferring Market Dynamics from Incomplete Data," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-076, New York University, Leonard N. Stern School of Business-.
    9. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    10. Didit Nugroho & Takayuki Morimoto, 2015. "Estimation of realized stochastic volatility models using Hamiltonian Monte Carlo-Based methods," Computational Statistics, Springer, vol. 30(2), pages 491-516, June.
    11. Tims, B. & Mahieu, R.J., 2003. "A Range-Based Multivariate Model for Exchange Rate Volatility," ERIM Report Series Research in Management ERS-2003-022-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. repec:dau:papers:123456789/15030 is not listed on IDEAS
    13. Bjorn Hansson & Peter Hordahl, 2005. "Forecasting variance using stochastic volatility and GARCH," The European Journal of Finance, Taylor & Francis Journals, vol. 11(1), pages 33-57.
    14. Hans J. Skaug & Jun Yu, 2009. "Automated Likelihood Based Inference for Stochastic Volatility Models," Working Papers 15-2009, Singapore Management University, School of Economics.
    15. Lee, Lung-fei, 1999. "Estimation of dynamic and ARCH Tobit models," Journal of Econometrics, Elsevier, vol. 92(2), pages 355-390, October.
    16. repec:dau:papers:123456789/6215 is not listed on IDEAS
    17. Cathy Chen & Feng-Chi Liu & Mike So, 2013. "Threshold variable selection of asymmetric stochastic volatility models," Computational Statistics, Springer, vol. 28(6), pages 2415-2447, December.
    18. Lee, Lung-Fei, 1997. "Simulation estimation of dynamic switching regression and dynamic disequilibrium models -- some Monte Carlo results," Journal of Econometrics, Elsevier, vol. 78(2), pages 179-184, June.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jae:japmet:v:8:y:1993:i:s:p:s135-52. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.