IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v51y2006i2p699-709.html
   My bibliography  Save this article

Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models

Author

Listed:
  • Skaug, Hans J.
  • Fournier, David A.

Abstract

No abstract is available for this item.

Suggested Citation

  • Skaug, Hans J. & Fournier, David A., 2006. "Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 699-709, November.
  • Handle: RePEc:eee:csdana:v:51:y:2006:i:2:p:699-709
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(06)00076-4
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167.
    2. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Picchini, Umberto & Ditlevsen, Susanne, 2011. "Practical estimation of high dimensional stochastic differential mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1426-1444, March.
    2. Jo Eidsvik & Sara Martino & Håvard Rue, 2009. "Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 1-22.
    3. Kleppe, Tore Selland & Skaug, Hans J., 2008. "Simulated maximum likelihood for general stochastic volatility models: a change of variable approach," MPRA Paper 12022, University Library of Munich, Germany.
    4. repec:eee:thpobi:v:77:y:2010:i:2:p:119-130 is not listed on IDEAS
    5. Bellio, Ruggero & Grassetti, Luca, 2011. "Semiparametric stochastic frontier models for clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 71-83, January.
    6. Christian Brinch, 2012. "Efficient simulated maximum likelihood estimation through explicitly parameter dependent importance sampling," Computational Statistics, Springer, vol. 27(1), pages 13-28, March.
    7. Tore Selland Kleppe & Hans J. Skaug, 2008. "Building and Fitting Non-Gaussian Latent Variable Models via the Moment-Generating Function," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 664-676.
    8. Hans J. Skaug & Jun Yu, 2009. "Automated Likelihood Based Inference for Stochastic Volatility Models," Working Papers 15-2009, Singapore Management University, School of Economics.
    9. repec:eee:ecomod:v:222:y:2011:i:8:p:1394-1400 is not listed on IDEAS
    10. Skaug, Hans J. & Yu, Jun, 2014. "A flexible and automated likelihood based framework for inference in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 642-654.
    11. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392.
    12. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
    13. Lee, Woojoo & Lim, Johan & Lee, Youngjo & del Castillo, Joan, 2011. "The hierarchical-likelihood approach to autoregressive stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 248-260, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2006:i:2:p:699-709. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.