IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Exploring US Business Cycles with Bivariate Loops Using Penalized Spline Regression

  • Göran Kauermann
  • Timo Teuber
  • Peter Flaschel

    ()

No abstract is available for this item.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1007/s10614-011-9262-2
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Society for Computational Economics in its journal Computational Economics.

Volume (Year): 39 (2012)
Issue (Month): 4 (April)
Pages: 409-427

as
in new window

Handle: RePEc:kap:compec:v:39:y:2012:i:4:p:409-427
Contact details of provider: Web page: http://www.springerlink.com/link.asp?id=100248

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Harvey, A C & Jaeger, A, 1993. "Detrending, Stylized Facts and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(3), pages 231-47, July-Sept.
  2. Schlicht, Ekkehart, 2004. "Estimating the Smoothing Parameter in the So-Called Hodrick-Prescott Filter," Discussion Papers in Economics 304, University of Munich, Department of Economics.
  3. Kauermann Goeran & Krivobokova Tatyana & Semmler Willi, 2011. "Filtering Time Series with Penalized Splines," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(2), pages 1-28, March.
  4. Wolfgang HÄRDLE & H. LÜTKEPOHL & R. CHEN, 1996. "A Review of Nonparametric Time Series Analysis," SFB 373 Discussion Papers 1996,48, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  5. Yingxing Li & David Ruppert, 2008. "On the asymptotics of penalized splines," Biometrika, Biometrika Trust, vol. 95(2), pages 415-436.
  6. Long, John B, Jr & Plosser, Charles I, 1983. "Real Business Cycles," Journal of Political Economy, University of Chicago Press, vol. 91(1), pages 39-69, February.
  7. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506.
  8. Atkinson, Anthony B, 1969. "The Timescale of Economic Models: How Long Is the Long Run?," Review of Economic Studies, Wiley Blackwell, vol. 36(106), pages 137-52, April.
  9. Lawrence J. Christiano & Terry J. Fitzgerald, 1999. "The Band pass filter," Working Paper 9906, Federal Reserve Bank of Cleveland.
    • Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, 05.
  10. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167.
  11. Tommaso Proietti, 2004. "Forecasting and Signal Extraction with Misspecified Models," Econometrics 0401002, EconWPA.
  12. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1.
  13. Chiarella,Carl & Flaschel,Peter & Franke,Reiner, 2005. "Foundations for a Disequilibrium Theory of the Business Cycle," Cambridge Books, Cambridge University Press, number 9780521850254.
  14. Krivobokova, Tatyana & Kauermann, Goran, 2007. "A Note on Penalized Spline Smoothing With Correlated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1328-1337, December.
  15. Göran Kauermann & Tatyana Krivobokova & Ludwig Fahrmeir, 2009. "Some asymptotic results on generalized penalized spline smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 487-503.
  16. Wenxin Mao & Linda H. Zhao, 2003. "Free-knot polynomial splines with confidence intervals," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(4), pages 901-919.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:39:y:2012:i:4:p:409-427. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.