IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i9p2159-2171.html
   My bibliography  Save this article

Small area estimation using a nonparametric model-based direct estimator

Author

Listed:
  • Salvati, Nicola
  • Chandra, Hukum
  • Giovanna Ranalli, M.
  • Chambers, Ray

Abstract

Nonparametric regression is widely used as a method of characterizing a non-linear relationship between a variable of interest and a set of covariates. Practical application of nonparametric regression methods in the field of small area estimation is fairly recent, and has so far focussed on the use of empirical best linear unbiased prediction under a model that combines a penalized spline (p-spline) fit and random area effects. The concept of model-based direct estimation is used to develop an alternative nonparametric approach to estimation of a small area mean. The suggested estimator is a weighted average of the sample values from the area, with weights derived from a linear regression model with random area effects extended to incorporate a smooth, nonparametrically specified trend. Estimation of the mean squared error of the proposed small area estimator is also discussed. Monte Carlo simulations based on both simulated and real datasets show that the proposed model-based direct estimator and its associated mean squared error estimator perform well. They are worth considering in small area estimation applications where the underlying population regression relationships are non-linear or have a complicated functional form.

Suggested Citation

  • Salvati, Nicola & Chandra, Hukum & Giovanna Ranalli, M. & Chambers, Ray, 2010. "Small area estimation using a nonparametric model-based direct estimator," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2159-2171, September.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:9:p:2159-2171
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00125-8
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, April.
    2. Ugarte, M.D. & Goicoa, T. & Militino, A.F. & Durbán, M., 2009. "Spline smoothing in small area trend estimation and forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3616-3629, August.
    3. María José Lombardía & Stefan Sperlich, 2008. "Semiparametric inference in generalized mixed effects models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 913-930.
    4. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tapabrata Maiti & Samiran Sinha & Ping-Shou Zhong, 2016. "Functional Mixed Effects Model for Small Area Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 886-903, September.
    2. Stefan Sperlich, 2013. "Comments on: Model-free model-fitting and predictive distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 227-233, June.
    3. N. Salvati & N. Tzavidis & M. Pratesi & R. Chambers, 2012. "Small area estimation via M-quantile geographically weighted regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 1-28, March.
    4. Chiara Bocci & Emilia Rocco, 2014. "Estimates for geographical domains through geoadditive models in presence of incomplete geographical information," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 283-305, June.
    5. repec:bla:jorssa:v:180:y:2017:i:4:p:1229-1252 is not listed on IDEAS
    6. Chandra, Hukum & Salvati, Nicola & Chambers, Ray & Tzavidis, Nikos, 2012. "Small area estimation under spatial nonstationarity," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2875-2888.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:9:p:2159-2171. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.