IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i10p2875-2888.html
   My bibliography  Save this article

Small area estimation under spatial nonstationarity

Author

Listed:
  • Chandra, Hukum
  • Salvati, Nicola
  • Chambers, Ray
  • Tzavidis, Nikos

Abstract

A geographical weighted empirical best linear unbiased predictor (GWEBLUP) for a small area average is proposed, and an estimator of its conditional mean squared error is developed. The popular empirical best linear unbiased predictor under the linear mixed model is obtained as a special case of the GWEBLUP. Empirical results using both model-based and design-based simulations, with the latter based on two real data sets, show that the GWEBLUP predictor can lead to efficiency gains when spatial nonstationarity is present in the data. A practical gain from using the GWEBLUP is in small area estimation for out of sample areas. In this case the efficient use of geographical information can potentially improve upon conventional synthetic estimation.

Suggested Citation

  • Chandra, Hukum & Salvati, Nicola & Chambers, Ray & Tzavidis, Nikos, 2012. "Small area estimation under spatial nonstationarity," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2875-2888.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:10:p:2875-2888
    DOI: 10.1016/j.csda.2012.02.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312000734
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Noel Cressie & Gardar Johannesson, 2008. "Fixed rank kriging for very large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 209-226.
    2. Ray Chambers & Nikos Tzavidis, 2006. "M-quantile models for small area estimation," Biometrika, Biometrika Trust, vol. 93(2), pages 255-268, June.
    3. Ugarte, M.D. & Goicoa, T. & Militino, A.F. & Durbán, M., 2009. "Spline smoothing in small area trend estimation and forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3616-3629, August.
    4. Salvati, Nicola & Chandra, Hukum & Giovanna Ranalli, M. & Chambers, Ray, 2010. "Small area estimation using a nonparametric model-based direct estimator," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2159-2171, September.
    5. J. D. Opsomer & G. Claeskens & M. G. Ranalli & G. Kauermann & F. J. Breidt, 2008. "Non-parametric small area estimation using penalized spline regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 265-286.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timo Schmid & Nikos Tzavidis & Ralf Münnich & Ray Chambers, 2016. "Outlier Robust Small-Area Estimation Under Spatial Correlation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 806-826, September.
    2. Baldermann, Claudia & Salvati, Nicola & Schmid, Timo, 2016. "Robust small area estimation under spatial non-stationarity," Discussion Papers 2016/5, Free University Berlin, School of Business & Economics.
    3. Schmid, Timo & Tzavidis, Nikos & Münnich, Ralf & Chambers, Ray, 2015. "Outlier robust small area estimation under spatial correlation," Discussion Papers 2015/8, Free University Berlin, School of Business & Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:10:p:2875-2888. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.