IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v17y2008i1p113-141.html
   My bibliography  Save this article

Small area estimation: the EBLUP estimator based on spatially correlated random area effects

Author

Listed:
  • Monica Pratesi

    ()

  • Nicola Salvati

    ()

Abstract

No abstract is available for this item.

Suggested Citation

  • Monica Pratesi & Nicola Salvati, 2008. "Small area estimation: the EBLUP estimator based on spatially correlated random area effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(1), pages 113-141, February.
  • Handle: RePEc:spr:stmapp:v:17:y:2008:i:1:p:113-141
    DOI: 10.1007/s10260-007-0061-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-007-0061-9
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dale Zimmerman & Noel Cressie, 1992. "Mean squared prediction error in the spatial linear model with estimated covariance parameters," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 44(1), pages 27-43, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:exl:29stat:v:17:y:2016:i:1:p:105-132 is not listed on IDEAS
    2. Roberto Benedetti & Monica Pratesi & Nicola Salvati, 2013. "Local stationarity in small area estimation models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 81-95, March.
    3. Luis Pereira & Pedro Coelho, 2013. "Estimation of house prices in regions with small sample sizes," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 50(2), pages 603-621, April.
    4. Timo Schmid & Nikos Tzavidis & Ralf Münnich & Ray Chambers, 2016. "Outlier Robust Small-Area Estimation Under Spatial Correlation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 806-826, September.
    5. N. Salvati & N. Tzavidis & M. Pratesi & R. Chambers, 2012. "Small area estimation via M-quantile geographically weighted regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 1-28, March.
    6. Eilers, Lea, 2017. "Is my rental price overestimated? A small area index for Germany," Ruhr Economic Papers 734, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    7. repec:exl:29stat:v:17:y:2016:i:3:p:365-390 is not listed on IDEAS
    8. Baldermann, Claudia & Salvati, Nicola & Schmid, Timo, 2016. "Robust small area estimation under spatial non-stationarity," Discussion Papers 2016/5, Free University Berlin, School of Business & Economics.
    9. Harm Jan Boonstra & Jan A. Van Den Brakel & Bart Buelens & Sabine Krieg & Marc Smeets, 2008. "Towards small area estimation at Statistics Netherlands," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 21-49.
    10. Schmid, Timo & Tzavidis, Nikos & Münnich, Ralf & Chambers, Ray, 2015. "Outlier robust small area estimation under spatial correlation," Discussion Papers 2015/8, Free University Berlin, School of Business & Economics.
    11. Timo Schmid & Ralf Münnich, 2014. "Spatial robust small area estimation," Statistical Papers, Springer, vol. 55(3), pages 653-670, August.
    12. Asep Saefuddin & Aji Hamim Wigena & Nunung Nuryartono & Dian Kusumaningrum, 2013. "Development And Aplication Of Bayesian Spatial Analysis On Poverty Data In East Java, Indonesia," ERSA conference papers ersa13p1043, European Regional Science Association.
    13. Alina Jędrzejczak & Jan Kubacki, 2016. "Small Area Estimation of Income Under Spatial Sar Model," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 17(3), pages 365-390, September.
    14. repec:csb:stintr:v:17:y:2016:i:1:p:105-132 is not listed on IDEAS
    15. Tomasz Ża̧dło, 2015. "On longitudinal moving average model for prediction of subpopulation total," Statistical Papers, Springer, vol. 56(3), pages 749-771, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:17:y:2008:i:1:p:113-141. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.