IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v23y2014i2p283-305.html
   My bibliography  Save this article

Estimates for geographical domains through geoadditive models in presence of incomplete geographical information

Author

Listed:
  • Chiara Bocci
  • Emilia Rocco

Abstract

The paper deals with the matter of producing geographical domains estimates for a variable with a spatial pattern in presence of incomplete information about the population units location. The spatial distribution of the study variable and its eventual relations with other covariates are modeled by a geoadditive regression. The use of such a model to produce model-based estimates for some geographical domains requires all the population units to be referenced at point locations, however typically the spatial coordinates are known only for the sampled units. An approach to treat the lack of geographical information for non-sampled units is suggested: it is proposed to impose a distribution on the spatial locations inside each domain. This is realized through a hierarchical Bayesian formulation of the geoadditive model in which a prior distribution on the spatial coordinates is defined. The performance of the proposed imputation approach is evaluated through various Markov Chain Monte Carlo experiments implemented under different scenarios. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Chiara Bocci & Emilia Rocco, 2014. "Estimates for geographical domains through geoadditive models in presence of incomplete geographical information," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 283-305, June.
  • Handle: RePEc:spr:stmapp:v:23:y:2014:i:2:p:283-305
    DOI: 10.1007/s10260-014-0256-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-014-0256-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10260-014-0256-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crainiceanu, Ciprian M. & Ruppert, David & Wand, Matthew P., 2005. "Bayesian Analysis for Penalized Spline Regression Using WinBUGS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i14).
    2. Gamerman, Dani & Moreira, Ajax R. B. & Rue, Havard, 2003. "Space-varying regression models: specifications and simulation," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 513-533, March.
    3. J. D. Opsomer & G. Claeskens & M. G. Ranalli & G. Kauermann & F. J. Breidt, 2008. "Non‐parametric small area estimation using penalized spline regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 265-286, February.
    4. Ludwig Fahrmeir & Stefan Lang, 2001. "Bayesian inference for generalized additive mixed models based on Markov random field priors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(2), pages 201-220.
    5. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506.
    6. M. P. Wand, 2003. "Smoothing and mixed models," Computational Statistics, Springer, vol. 18(2), pages 223-249, July.
    7. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167.
    8. Marley, Jennifer K. & Wand, Matthew P., 2010. "Non-Standard Semiparametric Regression via BRugs," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 37(i05).
    9. Salvati, Nicola & Chandra, Hukum & Giovanna Ranalli, M. & Chambers, Ray, 2010. "Small area estimation using a nonparametric model-based direct estimator," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2159-2171, September.
    10. E. E. Kammann & M. P. Wand, 2003. "Geoadditive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeremy Mennis & Michael Mason & Donna L. Coffman & Kevin Henry, 2018. "Geographic Imputation of Missing Activity Space Data from Ecological Momentary Assessment (EMA) GPS Positions," IJERPH, MDPI, vol. 15(12), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.
    2. Belitz, Christiane & Lang, Stefan, 2008. "Simultaneous selection of variables and smoothing parameters in structured additive regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 61-81, September.
    3. Congdon, Peter, 2006. "A model for non-parametric spatially varying regression effects," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 422-445, January.
    4. Salvati, Nicola & Chandra, Hukum & Giovanna Ranalli, M. & Chambers, Ray, 2010. "Small area estimation using a nonparametric model-based direct estimator," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2159-2171, September.
    5. Stefan Lang & Nikolaus Umlauf & Peter Wechselberger & Kenneth Harttgen & Thomas Kneib, 2012. "Multilevel structured additive regression," Working Papers 2012-07, Faculty of Economics and Statistics, Universität Innsbruck.
    6. Chandra, Hukum & Salvati, Nicola & Chambers, Ray, 2018. "Small area estimation under a spatially non-linear model," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 19-38.
    7. Nicole H. Augustin & Stefan Lang & Monica Musio & Klaus Von Wilpert, 2007. "A spatial model for the needle losses of pine‐trees in the forests of Baden‐Württemberg: an application of Bayesian structured additive regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(1), pages 29-50, January.
    8. F. Y. Kuo & W. T. M. Dunsmuir & I. H. Sloan & M. P. Wand & R. S. Womersley, 2008. "Quasi-Monte Carlo for Highly Structured Generalised Response Models," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 239-275, June.
    9. Thomas Kneib & Ludwig Fahrmeir, 2006. "Structured Additive Regression for Categorical Space–Time Data: A Mixed Model Approach," Biometrics, The International Biometric Society, vol. 62(1), pages 109-118, March.
    10. Lauren Hund & Jarvis T. Chen & Nancy Krieger & Brent A. Coull, 2012. "A Geostatistical Approach to Large-Scale Disease Mapping with Temporal Misalignment," Biometrics, The International Biometric Society, vol. 68(3), pages 849-858, September.
    11. Wood, Simon N., 2016. "Just Another Gibbs Additive Modeler: Interfacing JAGS and mgcv," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 75(i07).
    12. Nadja Klein & Michel Denuit & Stefan Lang & Thomas Kneib, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," Working Papers 2013-24, Faculty of Economics and Statistics, Universität Innsbruck.
    13. Paciorek, Christopher J., 2007. "Computational techniques for spatial logistic regression with large data sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3631-3653, May.
    14. Ugarte, M.D. & Goicoa, T. & Militino, A.F. & Durbán, M., 2009. "Spline smoothing in small area trend estimation and forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3616-3629, August.
    15. Veerabhadran Baladandayuthapani & Bani K. Mallick & Mee Young Hong & Joanne R. Lupton & Nancy D. Turner & Raymond J. Carroll, 2008. "Bayesian Hierarchical Spatially Correlated Functional Data Analysis with Application to Colon Carcinogenesis," Biometrics, The International Biometric Society, vol. 64(1), pages 64-73, March.
    16. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," LIDAM Discussion Papers ISBA 2013045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Denuit, Michel & Lang, Stefan, 2004. "Non-life rate-making with Bayesian GAMs," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 627-647, December.
    18. Welham, S.J. & Thompson, R., 2009. "A note on bimodality in the log-likelihood function for penalized spline mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 920-931, February.
    19. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    20. Skaug, Hans J. & Fournier, David A., 2006. "Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 699-709, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:23:y:2014:i:2:p:283-305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.