IDEAS home Printed from
   My bibliography  Save this article

Bayesian inference for generalized additive mixed models based on Markov random field priors


  • Ludwig Fahrmeir
  • Stefan Lang


Most regression problems in practice require flexible semiparametric forms of the predictor for modelling the dependence of responses on covariates. Moreover, it is often necessary to add random effects accounting for overdispersion caused by unobserved heterogeneity or for correlation in longitudinal or spatial data. We present a unified approach for Bayesian inference via Markov chain Monte Carlo simulation in generalized additive and semiparametric mixed models. Different types of covariates, such as the usual covariates with fixed effects, metrical covariates with non‐linear effects, unstructured random effects, trend and seasonal components in longitudinal data and spatial covariates, are all treated within the same general framework by assigning appropriate Markov random field priors with different forms and degrees of smoothness. We applied the approach in several case‐studies and consulting cases, showing that the methods are also computationally feasible in problems with many covariates and large data sets. In this paper, we choose two typical applications.

Suggested Citation

  • Ludwig Fahrmeir & Stefan Lang, 2001. "Bayesian inference for generalized additive mixed models based on Markov random field priors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(2), pages 201-220.
  • Handle: RePEc:bla:jorssc:v:50:y:2001:i:2:p:201-220
    DOI: 10.1111/1467-9876.00229

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:50:y:2001:i:2:p:201-220. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.