IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v42y2003i3p513-533.html
   My bibliography  Save this article

Space-varying regression models: specifications and simulation

Author

Listed:
  • Gamerman, Dani
  • Moreira, Ajax R. B.
  • Rue, Havard

Abstract

No abstract is available for this item.

Suggested Citation

  • Gamerman, Dani & Moreira, Ajax R. B. & Rue, Havard, 2003. "Space-varying regression models: specifications and simulation," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 513-533, March.
  • Handle: RePEc:eee:csdana:v:42:y:2003:i:3:p:513-533
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(02)00211-6
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mardia, K. V., 1988. "Multi-dimensional multivariate Gaussian Markov random fields with application to image processing," Journal of Multivariate Analysis, Elsevier, vol. 24(2), pages 265-284, February.
    2. Håvard Rue, 2001. "Fast sampling of Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 325-338.
    3. Leonhard Knorr-Held, 2002. "On Block Updating in Markov Random Field Models for Disease Mapping," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(4), pages 597-614.
    4. Alexandra Mello Schmidt & Dani Gamerman & Ajax Moreira, 1999. "An adaptive resampling scheme for cycle estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(5), pages 619-641.
    5. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    6. repec:sbe:breart:v:17:y:1997:i:1:a:2868 is not listed on IDEAS
    7. J. Besag & D. Higdon, 1999. "Bayesian analysis of agricultural field experiments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 691-746.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steinsland, Ingelin, 2007. "Parallel exact sampling and evaluation of Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2969-2981, March.
    2. Vinicius Mayrink & Dani Gamerman, 2009. "On computational aspects of Bayesian spatial models: influence of the neighboring structure in the efficiency of MCMC algorithms," Computational Statistics, Springer, vol. 24(4), pages 641-669, December.
    3. Alexandra Schmidt & Ajax Moreira & Steven Helfand & Thais Fonseca, 2009. "Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 31(2), pages 101-112, April.
    4. Congdon, P., 2007. "Bayesian modelling strategies for spatially varying regression coefficients: A multivariate perspective for multiple outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2586-2601, February.
    5. Ferreira, Marco A.R. & De Oliveira, Victor, 2007. "Bayesian reference analysis for Gaussian Markov random fields," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 789-812, April.
    6. Chiara Bocci & Emilia Rocco, 2014. "Estimates for geographical domains through geoadditive models in presence of incomplete geographical information," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 283-305, June.
    7. Bolin, David & Lindström, Johan & Eklundh, Lars & Lindgren, Finn, 2009. "Fast estimation of spatially dependent temporal vegetation trends using Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2885-2896, June.
    8. Wilkinson, Darren J & KH Yeung, Stephen, 2004. "A sparse matrix approach to Bayesian computation in large linear models," Computational Statistics & Data Analysis, Elsevier, vol. 44(3), pages 493-516, January.
    9. Belitz, Christiane & Lang, Stefan, 2008. "Simultaneous selection of variables and smoothing parameters in structured additive regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 61-81, September.
    10. F. S. Nathoo & C. B. Dean, 2008. "Spatial Multistate Transitional Models for Longitudinal Event Data," Biometrics, The International Biometric Society, vol. 64(1), pages 271-279, March.
    11. Dani Gamerman & Ajax R. B. Moreira, 2015. "Multivariate Spatial Regression Models," Discussion Papers 0116, Instituto de Pesquisa Econômica Aplicada - IPEA.
    12. Hernández-Mireles, C., 2010. "Finding the Influentials that Drive the Diffusion of New Technologies," ERIM Report Series Research in Management ERS-2010-023-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    13. Congdon, Peter, 2009. "Modelling the impact of socioeconomic structure on spatial health outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3047-3056, June.
    14. Gamerman, Dani & Moreira, Ajax R. B., 2004. "Multivariate spatial regression models," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 262-281, November.
    15. Strid, Ingvar, 2010. "Efficient parallelisation of Metropolis-Hastings algorithms using a prefetching approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2814-2835, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:42:y:2003:i:3:p:513-533. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.