IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Multivariate spatial regression models

  • Gamerman, Dani
  • Moreira, Ajax R. B.

This paper describes the inference procedures required to perform Bayesian inference to some multivariate econometric models. These models have a spatial component built into commonly used multivariate models. In particular, the common component models are addressed and extended to accommodate for spatial dependence. Inference procedures are based on a variety of simulation-based schemes designed to obtain samples from the posterior distribution of model parameters. They are also used to provide a basis to forecast new observations.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00034-X
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Multivariate Analysis.

Volume (Year): 91 (2004)
Issue (Month): 2 (November)
Pages: 262-281

as
in new window

Handle: RePEc:eee:jmvana:v:91:y:2004:i:2:p:262-281
Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. X. Lin & D. Zhang, 1999. "Inference in generalized additive mixed modelsby using smoothing splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 381-400.
  2. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
  3. P. Damlen & J. Wakefield & S. Walker, 1999. "Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 331-344.
  4. Pace, R. Kelley & Barry, Ronald & Gilley, Otis W. & Sirmans, C. F., 2000. "A method for spatial-temporal forecasting with an application to real estate prices," International Journal of Forecasting, Elsevier, vol. 16(2), pages 229-246.
  5. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika van der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639.
  6. Ludwig Fahrmeir & Stefan Lang, 2001. "Bayesian inference for generalized additive mixed models based on Markov random field priors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(2), pages 201-220.
  7. Smith, M. & Kohn, R., 1998. "Nonparametric Seemingly Unrelated Regression," Monash Econometrics and Business Statistics Working Papers 7/98, Monash University, Department of Econometrics and Business Statistics.
  8. Ludwig Fahrmeir & Stefan Lang, 2001. "Bayesian Semiparametric Regression Analysis of Multicategorical Time-Space Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 11-30, March.
  9. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers," Economic Journal, Royal Economic Society, vol. 92(365), pages 73-86, March.
  10. Gamerman, Dani & Moreira, Ajax R. B. & Rue, Havard, 2003. "Space-varying regression models: specifications and simulation," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 513-533, March.
  11. Mardia, K. V., 1988. "Multi-dimensional multivariate Gaussian Markov random fields with application to image processing," Journal of Multivariate Analysis, Elsevier, vol. 24(2), pages 265-284, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:91:y:2004:i:2:p:262-281. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.