IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/1998-7.html
   My bibliography  Save this paper

Nonparametric Seemingly Unrelated Regression

Author

Abstract

This paper presnets a method for simultaneously estimating a system of nonparametric multiple regressions which may seem unrelated, but where the errors are potentially correlated between equations. We show that the prime advantage of estimating such a 'seemingly unrelated' system of nonparametric regressions is that substantially less observations can be required to obtain reliable functions estimates than if each of the regression equations was estimated separately and the correlation ignored.

Suggested Citation

  • Smith, M. & Kohn, R., 1998. "Nonparametric Seemingly Unrelated Regression," Monash Econometrics and Business Statistics Working Papers 7/98, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:1998-7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Smith, Michael, 2000. "Modeling and Short-term Forecasting of New South Wales Electricity System Load," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(4), pages 465-478, October.
    2. Mandy, David M. & Martins-Filho, Carlos, 1993. "Seemingly unrelated regressions under additive heteroscedasticity : Theory and share equation applications," Journal of Econometrics, Elsevier, vol. 58(3), pages 315-346, August.
    3. Neil Shephard & Michael K Pitt, 1998. "Time Varying Covariances: A Factor Stochastic Volatility Approach (with discussion," Economics Series Working Papers 1998-W05, University of Oxford, Department of Economics.
    4. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    5. Min, Chung-ki & Zellner, Arnold, 1993. "Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rates," Journal of Econometrics, Elsevier, vol. 56(1-2), pages 89-118, March.
    6. Chib, Siddhartha & Greenberg, Edward, 1995. "Hierarchical analysis of SUR models with extensions to correlated serial errors and time-varying parameter models," Journal of Econometrics, Elsevier, vol. 68(2), pages 339-360, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hall, Anthony D. & Hwang, Soosung & Satchell, Stephen E., 2002. "Using Bayesian variable selection methods to choose style factors in global stock return models," Journal of Banking & Finance, Elsevier, vol. 26(12), pages 2301-2325.
    2. Ericsson, Johan & Karlsson, Sune, 2003. "Choosing Factors in a Multifactor Asset Pricing Model: A Bayesian Approach," SSE/EFI Working Paper Series in Economics and Finance 524, Stockholm School of Economics, revised 12 Feb 2004.
    3. Bin Zhou & Qinfeng Xu & Jinhong You, 2011. "Efficient estimation for error component seemingly unrelated nonparametric regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(1), pages 121-138, January.
    4. Wang, Hao, 2010. "Sparse seemingly unrelated regression modelling: Applications in finance and econometrics," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2866-2877, November.
    5. Anindya Bhadra & Bani K. Mallick, 2013. "Joint High-Dimensional Bayesian Variable and Covariance Selection with an Application to eQTL Analysis," Biometrics, The International Biometric Society, vol. 69(2), pages 447-457, June.
    6. Zellner, Arnold & Ando, Tomohiro, 2010. "A direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model," Journal of Econometrics, Elsevier, vol. 159(1), pages 33-45, November.
    7. Florackis, Chris & Kanas, Angelos & Kostakis, Alexandros, 2015. "Dividend policy, managerial ownership and debt financing: A non-parametric perspective," European Journal of Operational Research, Elsevier, vol. 241(3), pages 783-795.
    8. Orbe, Susan & Ferreira, Eva & Rodriguez-Poo, Juan, 2003. "An algorithm to estimate time-varying parameter SURE models under different types of restriction," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 363-383, March.
    9. Sune Karlsson & Tor Jacobson, 2004. "Finding good predictors for inflation: a Bayesian model averaging approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(7), pages 479-496.
    10. Martins-Filho, Carlos & Yao, Feng, 2009. "Nonparametric regression estimation with general parametric error covariance," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 309-333, March.
    11. Jinhong You & Xian Zhou, 2010. "Statistical inference on seemingly unrelated varying coefficient partially linear models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(2), pages 227-253.
    12. De Gooijer, Jan G. & Ray, Bonnie K., 2003. "Modeling vector nonlinear time series using POLYMARS," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 73-90, February.
    13. Griffiths, W.E., 2001. "Bayesian Inference in the Seemingly Unrelated Regressions Models," Department of Economics - Working Papers Series 793, The University of Melbourne.
    14. Zellner, Arnold & Ando, Tomohiro, 2010. "Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting," International Journal of Forecasting, Elsevier, vol. 26(2), pages 413-434, April.
    15. Gamerman, Dani & Moreira, Ajax R. B., 2004. "Multivariate spatial regression models," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 262-281, November.
    16. W.E. Griffiths & Ma. Rebecca Valenzuela, 2004. "Gibbs Samplers for a Set of Seemingly Unrelated Regressions," Department of Economics - Working Papers Series 912, The University of Melbourne.
    17. Panagiotelis, Anastasios & Smith, Michael, 2008. "Bayesian identification, selection and estimation of semiparametric functions in high-dimensional additive models," Journal of Econometrics, Elsevier, vol. 143(2), pages 291-316, April.
    18. Xu, Qinfeng & You, Jinhong & Zhou, Bin, 2008. "Seemingly unrelated nonparametric models with positive correlation and constrained error variances," Economics Letters, Elsevier, vol. 99(2), pages 223-227, May.
    19. Dale J. Poirier & Gary Koop & Justin Tobias, 2005. "Semiparametric Bayesian inference in multiple equation models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(6), pages 723-747.
    20. Chakraborty, Sounak, 2012. "Bayesian multiple response kernel regression model for high dimensional data and its practical applications in near infrared spectroscopy," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2742-2755.
    21. Anett Weber & Winfried J. Steiner & Stefan Lang, 2017. "A comparison of semiparametric and heterogeneous store sales models for optimal category pricing," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 403-445, March.
    22. Rosen, Ori & Thompson, Wesley K., 2009. "A Bayesian regression model for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3773-3786, September.

    More about this item

    Keywords

    MODELS ; ECONOMETRICS;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:1998-7. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang) or (Joanne Lustig). General contact details of provider: http://edirc.repec.org/data/dxmonau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.