IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v29y2002i4p597-614.html
   My bibliography  Save this article

On Block Updating in Markov Random Field Models for Disease Mapping

Author

Listed:
  • LEONHARD KNORR‐HELD
  • HÅVARD RUE

Abstract

Gaussian Markov random field (GMRF) models are commonly used to model spatial correlation in disease mapping applications. For Bayesian inference by MCMC, so far mainly single‐site updating algorithms have been considered. However, convergence and mixing properties of such algorithms can be extremely poor due to strong dependencies of parameters in the posterior distribution. In this paper, we propose various block sampling algorithms in order to improve the MCMC performance. The methodology is rather general, allows for non‐standard full conditionals, and can be applied in a modular fashion in a large number of different scenarios. For illustration we consider three different applications: two formulations for spatial modelling of a single disease (with and without additional unstructured parameters respectively), and one formulation for the joint analysis of two diseases. The results indicate that the largest benefits are obtained if parameters and the corresponding hyperparameter are updated jointly in one large block. Implementation of such block algorithms is relatively easy using methods for fast sampling of Gaussian Markov random fields (Rue, 2001). By comparison, Monte Carlo estimates based on single‐site updating can be rather misleading, even for very long runs. Our results may have wider relevance for efficient MCMC simulation in hierarchical models with Markov random field components.

Suggested Citation

  • Leonhard Knorr‐Held & Håvard Rue, 2002. "On Block Updating in Markov Random Field Models for Disease Mapping," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(4), pages 597-614, December.
  • Handle: RePEc:bla:scjsta:v:29:y:2002:i:4:p:597-614
    DOI: 10.1111/1467-9469.00308
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9469.00308
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9469.00308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vinicius Mayrink & Dani Gamerman, 2009. "On computational aspects of Bayesian spatial models: influence of the neighboring structure in the efficiency of MCMC algorithms," Computational Statistics, Springer, vol. 24(4), pages 641-669, December.
    2. Stefan Lang & Samson B. Adebayo & Ludwig Fahrmeir & Winfried J. Steiner, 2003. "Bayesian Geoadditive Seemingly Unrelated Regression," Computational Statistics, Springer, vol. 18(2), pages 263-292, July.
    3. Gamerman, Dani & Moreira, Ajax R. B. & Rue, Havard, 2003. "Space-varying regression models: specifications and simulation," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 513-533, March.
    4. Wilkinson, Darren J & KH Yeung, Stephen, 2004. "A sparse matrix approach to Bayesian computation in large linear models," Computational Statistics & Data Analysis, Elsevier, vol. 44(3), pages 493-516, January.
    5. Schmidt, Paul & Mühlau, Mark & Schmid, Volker, 2017. "Fitting large-scale structured additive regression models using Krylov subspace methods," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 59-75.
    6. Håvard Rue & Ingelin Steinsland & Sveinung Erland, 2004. "Approximating hidden Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 877-892, November.
    7. Duchwan Ryu & Erning Li & Bani K. Mallick, 2011. "Bayesian Nonparametric Regression Analysis of Data with Random Effects Covariates from Longitudinal Measurements," Biometrics, The International Biometric Society, vol. 67(2), pages 454-466, June.
    8. Coube-Sisqueille, Sébastien & Liquet, Benoît, 2022. "Improving performances of MCMC for Nearest Neighbor Gaussian Process models with full data augmentation," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    9. Khorsheed, Eman & Hurn, Merrilee & Jennison, Christopher, 2011. "Mapping electron density in the ionosphere: A principal component MCMC algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 338-352, January.
    10. Yu Ryan Yue & Ji Meng Loh, 2011. "Bayesian Semiparametric Intensity Estimation for Inhomogeneous Spatial Point Processes," Biometrics, The International Biometric Society, vol. 67(3), pages 937-946, September.
    11. Steinsland, Ingelin, 2007. "Parallel exact sampling and evaluation of Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2969-2981, March.
    12. David J. Allcroft & Chris A. Glasbey, 2003. "A latent Gaussian Markov random‐field model for spatiotemporal rainfall disaggregation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(4), pages 487-498, October.
    13. Miklos Arato, N. & Dryden, Ian L. & Taylor, Charles C., 2006. "Hierarchical Bayesian modelling of spatial age-dependent mortality," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1347-1363, November.
    14. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    15. Gerber, Florian & Furrer, Reinhard, 2015. "Pitfalls in the Implementation of Bayesian Hierarchical Modeling of Areal Count Data: An Illustration Using BYM and Leroux Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(c01).
    16. Oigard, Tor Arne & Rue, Havard & Godtliebsen, Fred, 2006. "Bayesian multiscale analysis for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1719-1730, December.
    17. Volker Schmid & Leonhard Held, 2004. "Bayesian Extrapolation of Space–Time Trends in Cancer Registry Data," Biometrics, The International Biometric Society, vol. 60(4), pages 1034-1042, December.
    18. Strid, Ingvar, 2010. "Efficient parallelisation of Metropolis-Hastings algorithms using a prefetching approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2814-2835, November.
    19. McCausland, William J. & Miller, Shirley & Pelletier, Denis, 2011. "Simulation smoothing for state-space models: A computational efficiency analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 199-212, January.
    20. Paciorek, Christopher J., 2007. "Computational techniques for spatial logistic regression with large data sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3631-3653, May.
    21. Leonhard Knorr-Held & Günter Raßer & Nikolaus Becker, 2002. "Disease Mapping of Stage-Specific Cancer Incidence Data," Biometrics, The International Biometric Society, vol. 58(3), pages 492-501, September.
    22. Gschlößl, Susanne & Czado, Claudia, 2008. "Does a Gibbs sampler approach to spatial Poisson regression models outperform a single site MH sampler?," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4184-4202, May.
    23. Peter Congdon, 2007. "Gaussian Markov Random Fields: Theory and Applications," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(3), pages 858-858, July.
    24. Alastair Rushworth & Duncan Lee & Christophe Sarran, 2017. "An adaptive spatiotemporal smoothing model for estimating trends and step changes in disease risk," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 141-157, January.
    25. Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:29:y:2002:i:4:p:597-614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.