IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

A sparse matrix approach to Bayesian computation in large linear models

  • Wilkinson, Darren J
  • KH Yeung, Stephen
Registered author(s):

    No abstract is available for this item.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 44 (2004)
    Issue (Month): 3 (January)
    Pages: 493-516

    in new window

    Handle: RePEc:eee:csdana:v:44:y:2004:i:3:p:493-516
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. H�vard Rue, 2001. "Fast sampling of Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 325-338.
    2. Gamerman, Dani & Moreira, Ajax R. B. & Rue, Havard, 2003. "Space-varying regression models: specifications and simulation," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 513-533, March.
    3. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
    4. Leonhard Knorr-Held, 2002. "On Block Updating in Markov Random Field Models for Disease Mapping," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(4), pages 597-614.
    5. Hobert, James P. & Geyer, Charles J., 1998. "Geometric Ergodicity of Gibbs and Block Gibbs Samplers for a Hierarchical Random Effects Model," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 414-430, November.
    6. R. J. Boys & D. A. Henderson & D. J. Wilkinson, 2000. "Detecting homogeneous segments in DNA sequences by using hidden Markov models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(2), pages 269-285.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:44:y:2004:i:3:p:493-516. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.