IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003676.html
   My bibliography  Save this article

CGBayesNets: Conditional Gaussian Bayesian Network Learning and Inference with Mixed Discrete and Continuous Data

Author

Listed:
  • Michael J McGeachie
  • Hsun-Hsien Chang
  • Scott T Weiss

Abstract

Bayesian Networks (BN) have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs) formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com.

Suggested Citation

  • Michael J McGeachie & Hsun-Hsien Chang & Scott T Weiss, 2014. "CGBayesNets: Conditional Gaussian Bayesian Network Learning and Inference with Mixed Discrete and Continuous Data," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-7, June.
  • Handle: RePEc:plo:pcbi00:1003676
    DOI: 10.1371/journal.pcbi.1003676
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003676
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003676&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003676?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wilkinson, Darren J & KH Yeung, Stephen, 2004. "A sparse matrix approach to Bayesian computation in large linear models," Computational Statistics & Data Analysis, Elsevier, vol. 44(3), pages 493-516, January.
    2. V Anne Smith & Jing Yu & Tom V Smulders & Alexander J Hartemink & Erich D Jarvis, 2006. "Computational Inference of Neural Information Flow Networks," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-14, November.
    3. Yanqing Chen & Jun Zhu & Pek Yee Lum & Xia Yang & Shirly Pinto & Douglas J. MacNeil & Chunsheng Zhang & John Lamb & Stephen Edwards & Solveig K. Sieberts & Amy Leonardson & Lawrence W. Castellini & Su, 2008. "Variations in DNA elucidate molecular networks that cause disease," Nature, Nature, vol. 452(7186), pages 429-435, March.
    4. Scutari, Marco, 2010. "Learning Bayesian Networks with the bnlearn R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i03).
    5. Boettcher, Susanne G. & Dethlefsen, Claus, 2003. "deal: A Package for Learning Bayesian Networks," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 8(i20).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qiongfang & Xu, Nan & Ersoy, Daniel & Liu, Yongming, 2022. "Manifold-based Conditional Bayesian network for aging pipe yield strength estimation with non-destructive measurements," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Paula Laccourreye & Concha Bielza & Pedro Larrañaga, 2022. "Explainable Machine Learning for Longitudinal Multi-Omic Microbiome," Mathematics, MDPI, vol. 10(12), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scutari, Marco, 2017. "Bayesian Network Constraint-Based Structure Learning Algorithms: Parallel and Optimized Implementations in the bnlearn R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i02).
    2. Sagnik Datta & Ghislaine Gayraud & Eric Leclerc & Frederic Y. Bois, 2017. "Graph_sampler: a simple tool for fully Bayesian analyses of DAG-models," Computational Statistics, Springer, vol. 32(2), pages 691-716, June.
    3. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    4. Vuong, Quan-Hoang & La, Viet-Phuong, 2019. "The bayesvl R package. User guide v0.8.1," OSF Preprints w5dx6, Center for Open Science.
    5. F. Cugnata & G. Perucca & S. Salini, 2017. "Bayesian networks and the assessment of universities' value added," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(10), pages 1785-1806, July.
    6. Roland R. Ramsahai, 2020. "Connecting actuarial judgment to probabilistic learning techniques with graph theory," Papers 2007.15475, arXiv.org.
    7. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    8. Myriam Patricia Cifuentes & Clara Mercedes Suarez & Ricardo Cifuentes & Noel Malod-Dognin & Sam Windels & Jose Fernando Valderrama & Paul D. Juarez & R. Burciaga Valdez & Cynthia Colen & Charles Phill, 2022. "Big Data to Knowledge Analytics Reveals the Zika Virus Epidemic as Only One of Multiple Factors Contributing to a Year-Over-Year 28-Fold Increase in Microcephaly Incidence," IJERPH, MDPI, vol. 19(15), pages 1-21, July.
    9. Silvia de Juan & Maria Dulce Subida & Andres Ospina-Alvarez & Ainara Aguilar & Miriam Fernandez, 2020. "Disentangling the socio-ecological drivers behind illegal fishing in a small-scale fishery managed by a TURF system," Papers 2012.08970, arXiv.org.
    10. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    11. Michail Tsagris, 2021. "A New Scalable Bayesian Network Learning Algorithm with Applications to Economics," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 341-367, January.
    12. Strid, Ingvar, 2010. "Efficient parallelisation of Metropolis-Hastings algorithms using a prefetching approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2814-2835, November.
    13. Michael J. Brusco & Douglas Steinley & Ashley L. Watts, 2022. "Disentangling relationships in symptom networks using matrix permutation methods," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 133-155, March.
    14. Sangsung Park & Sunghae Jun, 2020. "Patent Keyword Analysis of Disaster Artificial Intelligence Using Bayesian Network Modeling and Factor Analysis," Sustainability, MDPI, vol. 12(2), pages 1-11, January.
    15. Federica Cugnata & Silvia Salini & Elena Siletti, 2021. "Deepening Well-Being Evaluation with Different Data Sources: A Bayesian Networks Approach," IJERPH, MDPI, vol. 18(15), pages 1-10, July.
    16. Bibartiu, Otto & Dürr, Frank & Rothermel, Kurt & Ottenwälder, Beate & Grau, Andreas, 2021. "Scalable k-out-of-n models for dependability analysis with Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    17. Lingfei Wang, 2021. "Single-cell normalization and association testing unifying CRISPR screen and gene co-expression analyses with Normalisr," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    18. Emma Pierson & the GTEx Consortium & Daphne Koller & Alexis Battle & Sara Mostafavi, 2015. "Sharing and Specificity of Co-expression Networks across 35 Human Tissues," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-19, May.
    19. Kai Wang & Manikandan Narayanan & Hua Zhong & Martin Tompa & Eric E Schadt & Jun Zhu, 2009. "Meta-analysis of Inter-species Liver Co-expression Networks Elucidates Traits Associated with Common Human Diseases," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-16, December.
    20. repec:fgv:epgrbe:v:67:n:2:a:3 is not listed on IDEAS
    21. Bruce G. Marcot & Anca M. Hanea, 2021. "What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?," Computational Statistics, Springer, vol. 36(3), pages 2009-2031, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.