IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

An adaptive resampling scheme for cycle estimation

Listed author(s):
  • Alexandra Mello Schmidt
  • Dani Gamerman
  • Ajax Moreira

Bayesian dynamic linear models (DLMs) are useful in time series modelling, because of the flexibility that they off er for obtaining a good forecast. They are based on a decomposition of the relevant factors which explain the behaviour of the series through a series of state parameters. Nevertheless, the DLM as developed by West and Harrison depend on additional quantities, such as the variance of the system disturbances, which, in practice, are unknown. These are referred to here as 'hyper-parameters' of the model. In this paper, DLMs with autoregressive components are used to describe time series that show cyclic behaviour. The marginal posterior distribution for state parameters can be obtained by weighting the conditional distribution of state parameters by the marginal distribution of hyper-parameters. In most cases, the joint distribution of the hyperparameters can be obtained analytically but the marginal distributions of the components cannot, so requiring numerical integration. We propose to obtain samples of the hyperparameters by a variant of the sampling importance resampling method. A few applications are shown with simulated and real data sets.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Journal of Applied Statistics.

Volume (Year): 26 (1999)
Issue (Month): 5 ()
Pages: 619-641

in new window

Handle: RePEc:taf:japsta:v:26:y:1999:i:5:p:619-641
DOI: 10.1080/02664769922287
Contact details of provider: Web page:

Order Information: Web:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Lopes, Hedibert Freitas & Moreira, Ajax R. Bello & Schmidt, Alexandra Mello, 1999. "Hyperparameter estimation in forecast models," Computational Statistics & Data Analysis, Elsevier, vol. 29(4), pages 387-410, February.
  2. Danaher, Peter J. & Dagger, Tracey S. & Smith, Michael S., 2011. "Forecasting television ratings," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1215-1240, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:26:y:1999:i:5:p:619-641. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.