IDEAS home Printed from
   My bibliography  Save this article

An adaptive resampling scheme for cycle estimation


  • Alexandra Mello Schmidt
  • Dani Gamerman
  • Ajax Moreira


Bayesian dynamic linear models (DLMs) are useful in time series modelling, because of the flexibility that they off er for obtaining a good forecast. They are based on a decomposition of the relevant factors which explain the behaviour of the series through a series of state parameters. Nevertheless, the DLM as developed by West and Harrison depend on additional quantities, such as the variance of the system disturbances, which, in practice, are unknown. These are referred to here as 'hyper-parameters' of the model. In this paper, DLMs with autoregressive components are used to describe time series that show cyclic behaviour. The marginal posterior distribution for state parameters can be obtained by weighting the conditional distribution of state parameters by the marginal distribution of hyper-parameters. In most cases, the joint distribution of the hyperparameters can be obtained analytically but the marginal distributions of the components cannot, so requiring numerical integration. We propose to obtain samples of the hyperparameters by a variant of the sampling importance resampling method. A few applications are shown with simulated and real data sets.

Suggested Citation

  • Alexandra Mello Schmidt & Dani Gamerman & Ajax Moreira, 1999. "An adaptive resampling scheme for cycle estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(5), pages 619-641.
  • Handle: RePEc:taf:japsta:v:26:y:1999:i:5:p:619-641
    DOI: 10.1080/02664769922287

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Lopes, Hedibert Freitas & Moreira, Ajax R. Bello & Schmidt, Alexandra Mello, 1999. "Hyperparameter estimation in forecast models," Computational Statistics & Data Analysis, Elsevier, vol. 29(4), pages 387-410, February.
    2. Danaher, Peter J. & Dagger, Tracey S. & Smith, Michael S., 2011. "Forecasting television ratings," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1215-1240, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Gamerman, Dani & Moreira, Ajax R. B. & Rue, Havard, 2003. "Space-varying regression models: specifications and simulation," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 513-533, March.
    2. Ajax R. B. Moreira & Dani Gamerman, 2015. "Bayesian Analysis of Econometric Time Series Models Using Hybrid Integration Rules," Discussion Papers 0105, Instituto de Pesquisa Econômica Aplicada - IPEA.
    3. repec:sbe:breart:v:20:y:2000:i:1:a:2772 is not listed on IDEAS
    4. Lopes, Hedibert Freitas & Moreira, Ajax R. Bello & Schmidt, Alexandra Mello, 1999. "Hyperparameter estimation in forecast models," Computational Statistics & Data Analysis, Elsevier, vol. 29(4), pages 387-410, February.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:26:y:1999:i:5:p:619-641. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.