IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape

  • Nadja Klein

    ()

  • Michel Denuit

    ()

  • Stefan Lang

    ()

  • Thomas Kneib

    ()

Registered author(s):

    Generalized additive models for location, scale and shape define a flexible, semi-parametric class of regression models for analyzing insurance data in which the exponential family assumption for the response is relaxed. This approach allows the actuary to include risk factors not only in the mean but also in other parameters governing the claiming behavior, like the degree of residual heterogeneity or the no-claim probability. In this broader setting, the Negative Binomial regression with cell-specific heterogeneity and the zero-inflated Poisson regression with cell-specific additional probability mass at zero are applied to model claim frequencies. Models for claim severities that can be applied either per claim or aggregated per year are also presented. Bayesian inference is based on efficient Markov chain Monte Carlo simulation techniques and allows for the simultaneous estimation of possible nonlinear effects, spatial variations and interactions between risk factors within the data set. To illustrate the relevance of this approach, a detailed case study is proposed based on the Belgian motor insurance portfolio studied in Denuit and Lang (2004).

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://eeecon.uibk.ac.at/wopec2/repec/inn/wpaper/2013-24.pdf
    Download Restriction: no

    Paper provided by Faculty of Economics and Statistics, University of Innsbruck in its series Working Papers with number 2013-24.

    as
    in new window

    Length: 56 pages
    Date of creation: Oct 2013
    Date of revision:
    Handle: RePEc:inn:wpaper:2013-24
    Contact details of provider: Postal: Universit├Ątsstra├če 15, A - 6020 Innsbruck
    Phone: 0512/507-7151
    Fax: 0512/507-2788
    Web page: http://www.uibk.ac.at/fakultaeten/volkswirtschaft_und_statistik/index.html.enEmail:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. repec:cup:cbooks:9780521780506 is not listed on IDEAS
    2. Nadja Klein & Thomas Kneib & Stefan Lang, 2013. "Bayesian generalized additive models for location, scale and shape for zero-inflated and overdispersed count data," Working Papers 2013-12, Faculty of Economics and Statistics, University of Innsbruck.
    3. Ludwig Fahrmeir & Stefan Lang, 2001. "Bayesian inference for generalized additive mixed models based on Markov random field priors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(2), pages 201-220.
    4. Gneiting, Tilmann & Ranjan, Roopesh, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 411-422.
    5. D. Mikis Stasinopoulos & Robert A. Rigby, . "Generalized Additive Models for Location Scale and Shape (GAMLSS) in R," Journal of Statistical Software, American Statistical Association, vol. 23(i07).
    6. repec:cup:cbooks:9780521785167 is not listed on IDEAS
    7. S. N. Wood, 2000. "Modelling and smoothing parameter estimation with multiple quadratic penalties," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 413-428.
    8. X. Lin & D. Zhang, 1999. "Inference in generalized additive mixed modelsby using smoothing splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 381-400.
    9. Ludwig Fahrmeir & Stefan Lang, 2001. "Bayesian Semiparametric Regression Analysis of Multicategorical Time-Space Data," Annals of the Institute of Statistical Mathematics, Springer, vol. 53(1), pages 11-30, March.
    10. Stefan Lang & Nikolaus Umlauf & Peter Wechselberger & Kenneth Harttgen & Thomas Kneib, 2012. "Multilevel structured additive regression," Working Papers 2012-07, Faculty of Economics and Statistics, University of Innsbruck.
    11. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    12. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114.
    13. Denuit, Michel & Lang, Stefan, 2004. "Non-life rate-making with Bayesian GAMs," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 627-647, December.
    14. Nadja Klein & Thomas Kneib & Stefan Lang, 2013. "Bayesian Structured Additive Distributional Regression," Working Papers 2013-23, Faculty of Economics and Statistics, University of Innsbruck.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:inn:wpaper:2013-24. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Janette Walde)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.