IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Fast stable direct fitting and smoothness selection for generalized additive models

  • Simon N. Wood
Registered author(s):

    Existing computationally efficient methods for penalized likelihood generalized additive model fitting employ iterative smoothness selection on working linear models (or working mixed models). Such schemes fail to converge for a non-negligible proportion of models, with failure being particularly frequent in the presence of concurvity. If smoothness selection is performed by optimizing 'whole model' criteria these problems disappear, but until now attempts to do this have employed finite-difference-based optimization schemes which are computationally inefficient and can suffer from false convergence. The paper develops the first computationally efficient method for direct generalized additive model smoothness selection. It is highly stable, but by careful structuring achieves a computational efficiency that leads, in simulations, to lower mean computation times than the schemes that are based on working model smoothness selection. The method also offers a reliable way of fitting generalized additive mixed models. Copyright (c) 2008 Royal Statistical Society.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9868.2007.00646.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Royal Statistical Society in its journal Journal of the Royal Statistical Society: Series B (Statistical Methodology).

    Volume (Year): 70 (2008)
    Issue (Month): 3 ()
    Pages: 495-518

    as
    in new window

    Handle: RePEc:bla:jorssb:v:70:y:2008:i:3:p:495-518
    Contact details of provider: Postal: 12 Errol Street, London EC1Y 8LX, United Kingdom
    Phone: -44-171-638-8998
    Fax: -44-171-256-7598
    Web page: http://wileyonlinelibrary.com/journal/rssbEmail:


    More information through EDIRC

    Order Information: Web: http://ordering.onlinelibrary.wiley.com/subs.asp?ref=1467-9868&doi=10.1111/(ISSN)1467-9868

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:70:y:2008:i:3:p:495-518. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

    or (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.