IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws133026.html
   My bibliography  Save this paper

Fast algorithm for smoothing parameter selection in multidimensional generalized P-splines

Author

Listed:
  • Rodríguez-Álvarez, María Xosé
  • Lee, Dae-Jin
  • Kneib, Thomas
  • Durbán, María
  • Eilers, Paul

Abstract

A new computational algorithm for estimating the smoothing parameters of a multidimensional penalized spline generalized model with anisotropic penalty is presented. This new proposal is based on the mixed model representation of a multidimensional P-spline, in which the smoothing parameter for each covariate is expressed in terms of variance components. On the basis of penalized quasi-likelihood methods (PQL), closed-form expressions for the estimates of the variance components are obtained. This formulation leads to an efficient implementation that can considerably reduce the computational load. The proposed algorithm can be seen as a generalization of the algorithm by Schall (1991) - for variance components estimation - to deal with non-standard structures of the covariance matrix of the random effects. The practical performance of the proposed computational algorithm is evaluated by means of simulations, and comparisons with alternative methods are made on the basis of the mean square error criterion and the computing time. Finally, we illustrate our proposal with the analysis of two real datasets: a two dimensional example of historical records of monthly precipitation data in USA and a three dimensional one of mortality data from respiratory disease according to the age at death, the year of death and the month of death

Suggested Citation

  • Rodríguez-Álvarez, María Xosé & Lee, Dae-Jin & Kneib, Thomas & Durbán, María & Eilers, Paul, 2013. "Fast algorithm for smoothing parameter selection in multidimensional generalized P-splines," DES - Working Papers. Statistics and Econometrics. WS ws133026, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws133026
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/17544/ws133026.pdf?sequence=1
    Download Restriction: no

    References listed on IDEAS

    as
    1. I. D. Currie & M. Durban & P. H. C. Eilers, 2006. "Generalized linear array models with applications to multidimensional smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 259-280.
    2. Eilers, Paul H.C. & Currie, Iain D. & Durban, Maria, 2006. "Fast and compact smoothing on large multidimensional grids," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 61-76, January.
    3. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114.
    4. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    5. X. Lin & D. Zhang, 1999. "Inference in generalized additive mixed modelsby using smoothing splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 381-400.
    6. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, April.
    7. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Anisotropic penalty;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws133026. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.