IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i518p484-496.html
   My bibliography  Save this article

A Simultaneous Equation Approach to Estimating HIV Prevalence With Nonignorable Missing Responses

Author

Listed:
  • Giampiero Marra
  • Rosalba Radice
  • Till Bärnighausen
  • Simon N. Wood
  • Mark E. McGovern

Abstract

Estimates of HIV prevalence are important for policy to establish the health status of a country’s population and to evaluate the effectiveness of population-based interventions and campaigns. However, participation rates in testing for surveillance conducted as part of household surveys, on which many of these estimates are based, can be low. HIV positive individuals may be less likely to participate because they fear disclosure, in which case estimates obtained using conventional approaches to deal with missing data, such as imputation-based methods, will be biased. We develop a Heckman-type simultaneous equation approach that accounts for nonignorable selection, but unlike previous implementations, allows for spatial dependence and does not impose a homogenous selection process on all respondents. In addition, our framework addresses the issue of separation, where for instance some factors are severely unbalanced and highly predictive of the response, which would ordinarily prevent model convergence. Estimation is carried out within a penalized likelihood framework where smoothing is achieved using a parameterization of the smoothing criterion, which makes estimation more stable and efficient. We provide the software for straightforward implementation of the proposed approach, and apply our methodology to estimating national and sub-national HIV prevalence in Swaziland, Zimbabwe, and Zambia. Supplementary materials for this article are available online.

Suggested Citation

  • Giampiero Marra & Rosalba Radice & Till Bärnighausen & Simon N. Wood & Mark E. McGovern, 2017. "A Simultaneous Equation Approach to Estimating HIV Prevalence With Nonignorable Missing Responses," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 484-496, April.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:518:p:484-496
    DOI: 10.1080/01621459.2016.1224713
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1224713
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167.
    2. Bruno Arpino & Elisabetta De Cao & Franco Peracchi, 2014. "Using panel data for partial identification of human immunodeficiency virus prevalence when infection status is missing not at random," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 177(3), pages 587-606, June.
    3. Van de Ven, Wynand P. M. M. & Van Praag, Bernard M. S., 1981. "The demand for deductibles in private health insurance : A probit model with sample selection," Journal of Econometrics, Elsevier, vol. 17(2), pages 229-252, November.
    4. Puhani, Patrick A, 2000. " The Heckman Correction for Sample Selection and Its Critique," Journal of Economic Surveys, Wiley Blackwell, vol. 14(1), pages 53-68, February.
    5. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114.
    6. Simon N. Wood, 2013. "On p-values for smooth components of an extended generalized additive model," Biometrika, Biometrika Trust, vol. 100(1), pages 221-228.
    7. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    8. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    9. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 31(3), pages 129-137.
    10. Göran Kauermann & Christian Schellhase & David Ruppert, 2013. "Flexible Copula Density Estimation with Penalized Hierarchical B-splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 685-705, December.
    11. McGovern, Mark E. & Bärnighausen, Till & Giampiero Marra & Rosalba Radice, 2015. "On the Assumption of Bivariate Normality in Selection Models: A Copula Approach Applied to Estimating HIV Prevalence," Working Paper 199101, Harvard University OpenScholar.
    12. Madden, David, 2008. "Sample selection versus two-part models revisited: The case of female smoking and drinking," Journal of Health Economics, Elsevier, vol. 27(2), pages 300-307, March.
    13. Simon N. Wood, 2013. "A simple test for random effects in regression models," Biometrika, Biometrika Trust, vol. 100(4), pages 1005-1010.
    14. Wendy Janssens & Jacques Gaag & Tobias Rinke de Wit & Zlata Tanović, 2014. "Refusal Bias in the Estimation of HIV Prevalence," Demography, Springer;Population Association of America (PAA), vol. 51(3), pages 1131-1157, June.
    15. Francis Vella, 1998. "Estimating Models with Sample Selection Bias: A Survey," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 127-169.
    16. Nicoletti, Cheti, 2006. "Nonresponse in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 132(2), pages 461-489, June.
    17. Francis Obare, 2010. "Nonresponse in repeat population-based voluntary counseling and testing for HIV in rural Malawi," Demography, Springer;Population Association of America (PAA), vol. 47(3), pages 651-665, August.
    18. Christian Dustmann & María Engracia Rochina-Barrachina, 2007. "Selection correction in panel data models: An application to the estimation of females' wage equations," Econometrics Journal, Royal Economic Society, vol. 10(2), pages 263-293, July.
    19. Simon N. Wood, 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 673-686, January.
    20. Heckman, James J, 1990. "Varieties of Selection Bias," American Economic Review, American Economic Association, vol. 80(2), pages 313-318, May.
    21. Klovdahl, Alden S., 1985. "Social networks and the spread of infectious diseases: The AIDS example," Social Science & Medicine, Elsevier, vol. 21(11), pages 1203-1216, January.
    22. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506.
    23. Gary Chamberlain, 1980. "Analysis of Covariance with Qualitative Data," Review of Economic Studies, Oxford University Press, vol. 47(1), pages 225-238.
    24. Shen, Xiaojing & Zhu, Yunmin & Song, Lixin, 2008. "Linear B-spline copulas with applications to nonparametric estimation of copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3806-3819, March.
    25. Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
    26. Butler, J S, 1996. "Estimating the Correlation in Censored Probit Models," The Review of Economics and Statistics, MIT Press, vol. 78(2), pages 356-358, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark McGovern & David Canning & Till Bärnighausen, 2018. "Accounting for Non-Response Bias using Participation Incentives and Survey Design," CHaRMS Working Papers 18-02, Centre for HeAlth Research at the Management School (CHaRMS).

    More about this item

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • J10 - Labor and Demographic Economics - - Demographic Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:518:p:484-496. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/UASA20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.