IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/0325.html
   My bibliography  Save this paper

Analysis of Covariance With Qualitative Data

Author

Listed:
  • Gary Chamberlain

Abstract

In data with a group structure, incidental parameters are included to control for missing variables. Applications include longitudinal data and sibling data. In general, the joint maximum likelihood estimator of the structural parameters is not consistent as the number of groups increases, with a fixed number of observations per group. Instead a conditional likelihood function is maximized, conditional on sufficient statistics for the incidental parameters. In the logit case, a standard conditional logit program can be used. Another solution is a random effects model, in which the distribution of the incidental parameters may depend upon the exogenous variables.

Suggested Citation

  • Gary Chamberlain, 1979. "Analysis of Covariance With Qualitative Data," NBER Working Papers 0325, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:0325
    Note: LS
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w0325.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    2. Chamberlain, Gary & Griliches, Zvi, 1975. "Unobservables with a Variance-Components Structure: Ability, Schooling, and the Economic Success of Brothers," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 16(2), pages 422-449, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Griliches, Zvi & Hausman, Jerry A., 1986. "Errors in variables in panel data," Journal of Econometrics, Elsevier, vol. 31(1), pages 93-118, February.
    2. Joshua D. Angrist & Jinyong Hahn, 1999. "When to Control for Covariates? Panel-Asymptotic Results for Estimates of Treatment Effects," NBER Technical Working Papers 0241, National Bureau of Economic Research, Inc.
    3. Isabel PROENÇA & Enrique MARTINEZ-GALÁN & Maria Paula FONTOURA, 2017. "Trade Potential Revisited: A Panel Data Analysis For Zimbabwe," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 17(1), pages 113-130.
    4. Matthew M. Chingos & Grover J. Whitehurst & Michael R. Gallaher, 2015. "School Districts and Student Achievement," Education Finance and Policy, MIT Press, vol. 10(3), pages 378-398, July.
    5. Jirjahn, Uwe & Chadi, Cornelia, 2016. "Risk Attitude and Nonmarital Birth," IZA Discussion Papers 10316, Institute of Labor Economics (IZA).
    6. Kerstin Bruckmeier & Katrin Hohmeyer & Stefan Schwarz, 2018. "Welfare receipt misreporting in survey data and its consequences for state dependence estimates: new insights from linked administrative and survey data," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 52(1), pages 1-21, December.
    7. Laisney, François & Pohlmeier, Winfried & Staat, Matthias, 1991. "Estimation of labour supply functions using panel data: a survey," ZEW Discussion Papers 91-05, ZEW - Leibniz Centre for European Economic Research.
    8. Wang, Hui & Riedinger, Jeffrey & Jin, Songqing, 2015. "Land documents, tenure security and land rental development: Panel evidence from China," China Economic Review, Elsevier, vol. 36(C), pages 220-235.
    9. Régis BRETON & Sébastien GALANTI & Christophe HURLIN & Anne-Gaël VAUBOURG, 2011. "Does the firm-analyst relationship matter in explaining analysts' earnings forecast errors?," LEO Working Papers / DR LEO 469, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    10. Tabe-Ojong, M.P.J. & Mausch, K. & Woldeyohanes, T. & Heckelei, T., 2018. "A Triple-Hurdle Model of the Impacts of Improved Chickpea Adoption on Smallholder Production and Commercialization in Ethiopia," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277287, International Association of Agricultural Economists.
    11. Brown, Sarah & Greene, William H. & Harris, Mark N. & Taylor, Karl, 2015. "An inverse hyperbolic sine heteroskedastic latent class panel tobit model: An application to modelling charitable donations," Economic Modelling, Elsevier, vol. 50(C), pages 228-236.
    12. Dorotic, Matilda & Verhoef, Peter C. & Fok, Dennis & Bijmolt, Tammo H.A., 2014. "Reward redemption effects in a loyalty program when customers choose how much and when to redeem," International Journal of Research in Marketing, Elsevier, vol. 31(4), pages 339-355.
    13. Yasemin Bal Gunduz & Masyita Crystallin, 2014. "Do IMF-Supported Programs Catalyze Donor Assistance to Low-Income Countries?," IMF Working Papers 2014/202, International Monetary Fund.
    14. Chen, Yi-Yi & Schmidt, Peter & Wang, Hung-Jen, 2014. "Consistent estimation of the fixed effects stochastic frontier model," Journal of Econometrics, Elsevier, vol. 181(2), pages 65-76.
    15. Tesfaye, Wondimagegn & Tirivayi, Nyasha, 2020. "Crop diversity, household welfare and consumption smoothing under risk: Evidence from rural Uganda," World Development, Elsevier, vol. 125(C).
    16. Lorenzo Ductor & Sanjeev Goyal & Anja Prummer, 2018. "Gender & Collaboration," Working Papers 856, Queen Mary University of London, School of Economics and Finance.
    17. Bashir Ahmad & Maria Ciupac-Ulici & Daniela-Georgeta Beju, 2021. "Economic and Non-Economic Variables Affecting Fraud in European Countries," Risks, MDPI, Open Access Journal, vol. 9(6), pages 1-17, June.
    18. Angelo Secchi & Federico Tamagni & Chiara Tomasi, 2016. "Financial constraints and firm exports: accounting for heterogeneity, self-selection, and endogeneity," Industrial and Corporate Change, Oxford University Press, vol. 25(5), pages 813-827.
    19. Silvio R. Rendon, 2013. "Fixed and Random Effects in Classical and Bayesian Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(3), pages 460-476, June.
    20. George Halkos & Iacovos Psarianos, 2016. "Exploring the effect of including the environment in the neoclassical growth model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(3), pages 339-358, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:0325. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.