IDEAS home Printed from https://ideas.repec.org/p/qub/wpaper/1602.html
   My bibliography  Save this paper

A Simultaneous Equation Approach to Estimating HIV Prevalence with Non-Ignorable Missing Responses

Author

Listed:
  • Giampiero Marra
  • Rosalba Radice
  • Till Bärnighausen
  • Simon N. Wood
  • Mark E. McGovern

Abstract

Estimates of HIV prevalence are important for policy in order to establish the health status of a country's population and to evaluate the effectiveness of population-based interventions and campaigns. However, participation rates in testing for surveillance conducted as part of household surveys, on which many of these estimates are based, can be low. HIV positive individuals may be less likely to participate because they fear disclosure, in which case estimates obtained using conventional approaches to deal with missing data, such as imputation-based methods, will be biased. We develop a Heckman-type simultaneous equation approach which accounts for non-ignorable selection, but unlike previous implementations, allows for spatial dependence and does not impose a homogeneous selection process on all respondents. In addition, our framework addresses the issue of separation, where for instance some factors are severely unbalanced and highly predictive of the response, which would ordinarily prevent model convergence. Estimation is carried out within a penalized likelihood framework where smoothing is achieved using a parametrization of the smoothing criterion which makes estimation more stable and efficient. We provide the software for straightforward implementation of the proposed approach, and apply our methodology to estimating national and sub-national HIV prevalence in Swaziland, Zimbabwe and Zambia.

Suggested Citation

  • Giampiero Marra & Rosalba Radice & Till Bärnighausen & Simon N. Wood & Mark E. McGovern, 2016. "A Simultaneous Equation Approach to Estimating HIV Prevalence with Non-Ignorable Missing Responses," Economics Working Papers 16-02, Queen's Management School, Queen's University Belfast.
  • Handle: RePEc:qub:wpaper:1602
    as

    Download full text from publisher

    File URL: ftp://ftp.qub.ac.uk/pub/users/repec/qub/wpaper/MS_WPS_ECO_16_02.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bruno Arpino & Elisabetta De Cao & Franco Peracchi, 2014. "Using panel data for partial identification of human immunodeficiency virus prevalence when infection status is missing not at random," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 177(3), pages 587-606, June.
    2. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    3. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    4. Göran Kauermann & Christian Schellhase & David Ruppert, 2013. "Flexible Copula Density Estimation with Penalized Hierarchical B-splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 685-705, December.
    5. McGovern, Mark E. & Bärnighausen, Till & Giampiero Marra & Rosalba Radice, 2015. "On the Assumption of Bivariate Normality in Selection Models: A Copula Approach Applied to Estimating HIV Prevalence," Working Paper 199101, Harvard University OpenScholar.
    6. Francis Vella, 1998. "Estimating Models with Sample Selection Bias: A Survey," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 127-169.
    7. Nicoletti, Cheti, 2006. "Nonresponse in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 132(2), pages 461-489, June.
    8. Simon N. Wood, 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 673-686, January.
    9. Heckman, James J, 1990. "Varieties of Selection Bias," American Economic Review, American Economic Association, vol. 80(2), pages 313-318, May.
    10. Shen, Xiaojing & Zhu, Yunmin & Song, Lixin, 2008. "Linear B-spline copulas with applications to nonparametric estimation of copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3806-3819, March.
    11. Madden, David, 2008. "Sample selection versus two-part models revisited: The case of female smoking and drinking," Journal of Health Economics, Elsevier, vol. 27(2), pages 300-307, March.
    12. Patrick Puhani, 2000. "The Heckman Correction for Sample Selection and Its Critique," Journal of Economic Surveys, Wiley Blackwell, vol. 14(1), pages 53-68, February.
    13. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, January.
    14. Van de Ven, Wynand P. M. M. & Van Praag, Bernard M. S., 1981. "The demand for deductibles in private health insurance : A probit model with sample selection," Journal of Econometrics, Elsevier, vol. 17(2), pages 229-252, November.
    15. Simon N. Wood, 2013. "On p-values for smooth components of an extended generalized additive model," Biometrika, Biometrika Trust, vol. 100(1), pages 221-228.
    16. Gary Chamberlain, 1980. "Analysis of Covariance with Qualitative Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 225-238.
    17. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    18. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    19. Simon N. Wood, 2013. "A simple test for random effects in regression models," Biometrika, Biometrika Trust, vol. 100(4), pages 1005-1010.
    20. Segers, Johan & Van den Akker, Ramon & Werker, Bas, 2014. "Semiparametric Gaussian copula models: Geometry and efficient rank-based Estimation," LIDAM Reprints ISBA 2014021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    21. Wendy Janssens & Jacques Gaag & Tobias Rinke de Wit & Zlata Tanović, 2014. "Refusal Bias in the Estimation of HIV Prevalence," Demography, Springer;Population Association of America (PAA), vol. 51(3), pages 1131-1157, June.
    22. Francis Obare, 2010. "Nonresponse in repeat population-based voluntary counseling and testing for HIV in rural Malawi," Demography, Springer;Population Association of America (PAA), vol. 47(3), pages 651-665, August.
    23. Christian Dustmann & María Engracia Rochina-Barrachina, 2007. "Selection correction in panel data models: An application to the estimation of females' wage equations," Econometrics Journal, Royal Economic Society, vol. 10(2), pages 263-293, July.
    24. Jeffrey A. Dubin & Douglas Rivers, 1989. "Selection Bias in Linear Regression, Logit and Probit Models," Sociological Methods & Research, , vol. 18(2-3), pages 360-390, November.
    25. Klovdahl, Alden S., 1985. "Social networks and the spread of infectious diseases: The AIDS example," Social Science & Medicine, Elsevier, vol. 21(11), pages 1203-1216, January.
    26. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, January.
    27. Zimmer, David M. & Trivedi, Pravin K., 2006. "Using Trivariate Copulas to Model Sample Selection and Treatment Effects: Application to Family Health Care Demand," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 63-76, January.
    28. Marra, Giampiero & Radice, Rosalba, 2017. "Bivariate copula additive models for location, scale and shape," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 99-113.
    29. Giampiero Marra & Simon N. Wood, 2012. "Coverage Properties of Confidence Intervals for Generalized Additive Model Components," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(1), pages 53-74, March.
    30. Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
    31. Butler, J S, 1996. "Estimating the Correlation in Censored Probit Models," The Review of Economics and Statistics, MIT Press, vol. 78(2), pages 356-358, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Sam Watson’s journal round-up for 21st August 2017
      by Sam Watson in The Academic Health Economists' Blog on 2017-08-21 16:00:35

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Godinho de Matos & Pedro Ferreira, 2020. "The Effect of Binge-Watching on the Subscription of Video on Demand: Results from Randomized Experiments," Information Systems Research, INFORMS, vol. 31(4), pages 1337-1360, December.
    2. Wiemann, Paul F.V. & Klein, Nadja & Kneib, Thomas, 2022. "Correcting for sample selection bias in Bayesian distributional regression models," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    3. Mussida Chiara & Zanin Luca, 2019. "Voluntary Mobility of Employees for Better Job Opportunities Given a Temporary Contract: Insights Regarding an Age-Varying Association Between the Two Events," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 19(2), pages 1-27, April.
    4. Schmidt, Rouven & Kneib, Thomas, 2023. "Multivariate distributional stochastic frontier models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    5. McGovern, Mark E. & Canning, David & Bärnighausen, Till, 2018. "Accounting for non-response bias using participation incentives and survey design: An application using gift vouchers," Economics Letters, Elsevier, vol. 171(C), pages 239-244.
    6. Dettoni, Robinson & Gil-Alana, Luis A. & Yaya, OlaOluwa S., 2024. "Stock market prices and Dividends in the US: Bubbles or Long-run equilibria relationships?," International Review of Financial Analysis, Elsevier, vol. 94(C).
    7. Dettoni, Robinson & Gil-Alana, Luis Alberiko, 2023. "Testing the hypothesis of duration dependence in the U.S. housing market," Finance Research Letters, Elsevier, vol. 58(PD).
    8. Marra Giampiero & Radice Rosalba, 2017. "A joint regression modeling framework for analyzing bivariate binary data in R," Dependence Modeling, De Gruyter, vol. 5(1), pages 268-294, December.
    9. Marra, Giampiero & Radice, Rosalba, 2017. "Bivariate copula additive models for location, scale and shape," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 99-113.
    10. Nadja Klein & Thomas Kneib & Giampiero Marra & Rosalba Radice & Slawa Rokicki & Mark E. McGovern, 2018. "Mixed Binary-Continuous Copula Regression Models with Application to Adverse Birth Outcomes," CHaRMS Working Papers 18-06, Centre for HeAlth Research at the Management School (CHaRMS).
    11. Wojtyś, Małgorzata & Marra, Giampiero & Radice, Rosalba, 2018. "Copula based generalized additive models for location, scale and shape with non-random sample selection," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 1-14.
    12. Giampiero Marra & Rosalba Radice & David M. Zimmer, 2020. "Estimating the binary endogenous effect of insurance on doctor visits by copula‐based regression additive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 953-971, August.
    13. Machado, Robson J.M. & van den Hout, Ardo & Marra, Giampiero, 2021. "Penalised maximum likelihood estimation in multi-state models for interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    14. Mark McGovern & David Canning & Till Bärnighausen, 2018. "Accounting for Non-Response Bias using Participation Incentives and Survey Design," CHaRMS Working Papers 18-02, Centre for HeAlth Research at the Management School (CHaRMS).
    15. Beręsewicz Maciej, 2019. "Correlates of Representation Errors in Internet Data Sources for Real Estate Market," Journal of Official Statistics, Sciendo, vol. 35(3), pages 509-529, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marra, Giampiero & Radice, Rosalba, 2017. "Bivariate copula additive models for location, scale and shape," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 99-113.
    2. Marra, Giampiero & Wyszynski, Karol, 2016. "Semi-parametric copula sample selection models for count responses," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 110-129.
    3. McGovern, Mark E. & Canning, David & Bärnighausen, Till, 2018. "Accounting for non-response bias using participation incentives and survey design: An application using gift vouchers," Economics Letters, Elsevier, vol. 171(C), pages 239-244.
    4. Nadja Klein & Thomas Kneib & Giampiero Marra & Rosalba Radice & Slawa Rokicki & Mark E. McGovern, 2018. "Mixed Binary-Continuous Copula Regression Models with Application to Adverse Birth Outcomes," CHaRMS Working Papers 18-06, Centre for HeAlth Research at the Management School (CHaRMS).
    5. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    6. Marra Giampiero & Radice Rosalba, 2017. "A joint regression modeling framework for analyzing bivariate binary data in R," Dependence Modeling, De Gruyter, vol. 5(1), pages 268-294, December.
    7. Marra, Giampiero & Radice, Rosalba, 2013. "Estimation of a regression spline sample selection model," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 158-173.
    8. Karol Wyszynski & Giampiero Marra, 2018. "Sample selection models for count data in R," Computational Statistics, Springer, vol. 33(3), pages 1385-1412, September.
    9. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    10. Maike Hohberg & Francesco Donat & Giampiero Marra & Thomas Kneib, 2021. "Beyond unidimensional poverty analysis using distributional copula models for mixed ordered‐continuous outcomes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1365-1390, November.
    11. Musolesi Antonio & Mazzanti Massimiliano, 2014. "Nonlinearity, heterogeneity and unobserved effects in the carbon dioxide emissions-economic development relation for advanced countries," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(5), pages 521-541, December.
    12. Nathaniel E. Helwig, 2022. "Robust Permutation Tests for Penalized Splines," Stats, MDPI, vol. 5(3), pages 1-18, September.
    13. Sylvie Charlot & Riccardo Crescenzi & Antonio Musolesi, 2014. "Augmented and Unconstrained: revisiting the Regional Knowledge Production Function," SEEDS Working Papers 2414, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2014.
    14. Mark McGovern & David Canning & Till Bärnighausen, 2018. "Accounting for Non-Response Bias using Participation Incentives and Survey Design," CHaRMS Working Papers 18-02, Centre for HeAlth Research at the Management School (CHaRMS).
    15. Mazzanti, Massimiliano & Musolesi, Antonio, 2013. "Nonlinearity, Heterogeneity and Unobserved Effects in the CO2-income Relation for Advanced Countries," Climate Change and Sustainable Development 162374, Fondazione Eni Enrico Mattei (FEEM).
    16. Basile, Roberto & Durbán, María & Mínguez, Román & María Montero, Jose & Mur, Jesús, 2014. "Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 229-245.
    17. Daniel Melser, 2017. "Residential Real Estate, Risk, Return and Home Characteristics: Evidence from Sydney 2002-14," ERES eres2017_296, European Real Estate Society (ERES).
    18. Schmidt, Rouven & Kneib, Thomas, 2023. "Multivariate distributional stochastic frontier models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    19. Gressani, Oswaldo & Lambert, Philippe, 2021. "Laplace approximations for fast Bayesian inference in generalized additive models based on P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    20. Wojtyś, Małgorzata & Marra, Giampiero & Radice, Rosalba, 2018. "Copula based generalized additive models for location, scale and shape with non-random sample selection," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 1-14.

    More about this item

    Keywords

    Heckman-Type Selection Model; HIV; Penalized Regression Splines; Selection Bias; Simultaneous Equation Models; Spatial Dependence;
    All these keywords.

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • J10 - Labor and Demographic Economics - - Demographic Economics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qub:wpaper:1602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mark McGovern (email available below). General contact details of provider: https://edirc.repec.org/data/dequbuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.