IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v37y2013i9p1872-1888.html
   My bibliography  Save this article

Asymmetry in the jump-size distribution of the S&P 500: Evidence from equity and option markets

Author

Listed:
  • Kaeck, Andreas

Abstract

This paper studies alternative distributions for the size of price jumps in the S&P 500 index. We introduce a range of new jump-diffusion models and extend popular double-jump specifications that have become ubiquitous in the finance literature. The dynamic properties of these models are tested on both a long time series of S&P 500 returns and a large sample of European vanilla option prices. We discuss the in- and out-of-sample option pricing performance and provide detailed evidence of jump risk premia. Models with double-gamma jump size distributions are found to outperform benchmark models with normally distributed jump sizes.

Suggested Citation

  • Kaeck, Andreas, 2013. "Asymmetry in the jump-size distribution of the S&P 500: Evidence from equity and option markets," Journal of Economic Dynamics and Control, Elsevier, vol. 37(9), pages 1872-1888.
  • Handle: RePEc:eee:dyncon:v:37:y:2013:i:9:p:1872-1888
    DOI: 10.1016/j.jedc.2013.04.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188913000857
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2013.04.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    2. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    3. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    4. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
    5. Alexandros Kostakis & Nikolaos Panigirtzoglou & George Skiadopoulos, 2011. "Market Timing with Option-Implied Distributions: A Forward-Looking Approach," Management Science, INFORMS, vol. 57(7), pages 1231-1249, July.
    6. Tim Bollerslev & Viktor Todorov, 2011. "Estimation of Jump Tails," Econometrica, Econometric Society, vol. 79(6), pages 1727-1783, November.
    7. Jin‐Chuan Duan & Peter Ritchken & Zhiqiang Sun, 2006. "Approximating Garch‐Jump Models, Jump‐Diffusion Processes, And Option Pricing," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 21-52, January.
    8. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    9. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    10. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    11. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
    12. repec:bla:jfinan:v:59:y:2004:i:3:p:1367-1404 is not listed on IDEAS
    13. Haitao Li & Martin T. Wells & Cindy L. Yu, 2008. "A Bayesian Analysis of Return Dynamics with Lévy Jumps," The Review of Financial Studies, Society for Financial Studies, vol. 21(5), pages 2345-2378, September.
    14. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(4), pages 657-681, October.
    15. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    16. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    17. Gurdip Bakshi & Nikunj Kapadia, 2003. "Delta-Hedged Gains and the Negative Market Volatility Risk Premium," The Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 527-566.
    18. repec:bla:jfinan:v:59:y:2004:i:1:p:227-260 is not listed on IDEAS
    19. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    20. Viktor Todorov & George Tauchen, 2011. "Volatility Jumps," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 356-371, July.
    21. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    22. Christoffersen, Peter & Dorion, Christian & Jacobs, Kris & Wang, Yintian, 2010. "Volatility Components, Affine Restrictions, and Nonnormal Innovations," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 483-502.
    23. Berg, Andreas & Meyer, Renate & Yu, Jun, 2004. "Deviance Information Criterion for Comparing Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 107-120, January.
    24. Christoffersen, Peter & Jacobs, Kris, 2004. "The importance of the loss function in option valuation," Journal of Financial Economics, Elsevier, vol. 72(2), pages 291-318, May.
    25. David S. Bates, 2006. "Maximum Likelihood Estimation of Latent Affine Processes," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 909-965.
    26. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2009. "Exploring Time-Varying Jump Intensities: Evidence from S&P500 Returns and Options," CIRANO Working Papers 2009s-34, CIRANO.
    27. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    28. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    29. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    30. Mark Broadie & Mikhail Chernov & Michael Johannes, 2007. "Model Specification and Risk Premia: Evidence from Futures Options," Journal of Finance, American Finance Association, vol. 62(3), pages 1453-1490, June.
    31. repec:bla:jfinan:v:59:y:2004:i:3:p:1405-1440 is not listed on IDEAS
    32. Brice Dupoyet, 2004. "Asymmetric Jump Processes: Option Pricing Implications," Computing in Economics and Finance 2004 40, Society for Computational Economics.
    33. Joshua D. Coval & Tyler Shumway, 2001. "Expected Option Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 983-1009, June.
    34. Bates, David S., 2012. "U.S. stock market crash risk, 1926–2010," Journal of Financial Economics, Elsevier, vol. 105(2), pages 229-259.
    35. W. R. Gilks & N. G. Best & K. K. C. Tan, 1995. "Adaptive Rejection Metropolis Sampling Within Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(4), pages 455-472, December.
    36. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
    37. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chevallier Julien & Goutte Stéphane, 2017. "On the estimation of regime-switching Lévy models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(1), pages 3-29, February.
    2. Wanidwaranan, Phasin & Padungsaksawasdi, Chaiyuth, 2020. "The effect of return jumps on herd behavior," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    3. Shaw, Charles, 2018. "Regime-Switching And Levy Jump Dynamics In Option-Adjusted Spreads," MPRA Paper 94154, University Library of Munich, Germany, revised 27 May 2019.
    4. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2018. "Model Complexity and Out-of-Sample Performance: Evidence from S&P 500 Index Returns," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 1-29.
    5. Michael C. Fu & Bingqing Li & Guozhen Li & Rongwen Wu, 2017. "Option Pricing for a Jump-Diffusion Model with General Discrete Jump-Size Distributions," Management Science, INFORMS, vol. 63(11), pages 3961-3977, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
    2. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    3. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    4. Carverhill, Andrew & Luo, Dan, 2023. "A Bayesian analysis of time-varying jump risk in S&P 500 returns and options," Journal of Financial Markets, Elsevier, vol. 64(C).
    5. Ornthanalai, Chayawat, 2014. "Lévy jump risk: Evidence from options and returns," Journal of Financial Economics, Elsevier, vol. 112(1), pages 69-90.
    6. Kaeck, Andreas & Alexander, Carol, 2012. "Volatility dynamics for the S&P 500: Further evidence from non-affine, multi-factor jump diffusions," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 3110-3121.
    7. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    8. Du Du & Dan Luo, 2019. "The Pricing of Jump Propagation: Evidence from Spot and Options Markets," Management Science, INFORMS, vol. 67(5), pages 2360-2387, May.
    9. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2017. "Equity index variance: Evidence from flexible parametric jump–diffusion models," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 85-103.
    10. Shackleton, Mark B. & Taylor, Stephen J. & Yu, Peng, 2010. "A multi-horizon comparison of density forecasts for the S&P 500 using index returns and option prices," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2678-2693, November.
    11. Papantonis, Ioannis, 2016. "Volatility risk premium implications of GARCH option pricing models," Economic Modelling, Elsevier, vol. 58(C), pages 104-115.
    12. Byun, Suk Joon & Jeon, Byoung Hyun & Min, Byungsun & Yoon, Sun-Joong, 2015. "The role of the variance premium in Jump-GARCH option pricing models," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 38-56.
    13. Augustyniak, Maciej & Badescu, Alexandru & Bégin, Jean-François, 2023. "A discrete-time hedging framework with multiple factors and fat tails: On what matters," Journal of Econometrics, Elsevier, vol. 232(2), pages 416-444.
    14. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2009. "Exploring Time-Varying Jump Intensities: Evidence from S&P500 Returns and Options," CIRANO Working Papers 2009s-34, CIRANO.
    15. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2007. "Models for S&P500 Dynamics: Evidence from Realized Volatility, Daily Returns, and Option Prices," CREATES Research Papers 2007-37, Department of Economics and Business Economics, Aarhus University.
    16. Santa-Clara, Pedro & Yan, Shu, 2004. "Jump and Volatility Risk and Risk Premia: A New Model and Lessons from S&P 500 Options," University of California at Los Angeles, Anderson Graduate School of Management qt5dv8v999, Anderson Graduate School of Management, UCLA.
    17. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    18. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    19. H. Peter Boswijk & Roger J. A. Laeven & Evgenii Vladimirov, 2022. "Estimating Option Pricing Models Using a Characteristic Function-Based Linear State Space Representation," Papers 2210.06217, arXiv.org.
    20. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.

    More about this item

    Keywords

    Jump-size distribution; European options; S&P 500; Model calibration;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:37:y:2013:i:9:p:1872-1888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.