IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

The Importance of the Loss Function in Option Valuation

  • Peter Christoffersen
  • Kris Jacobs

Which loss function should be used when estimating and evaluating option valuation models? Many different functions have been suggested, but no standard has emerged. We emphasize that consistency in the choice of loss functions is crucial. First, for any given model, the loss function used in parameter estimation and model evaluation should be the same, otherwise suboptimal parameter estimates may be obtained. Second, when comparing models, the estimation loss function should be identical across models, otherwise inappropriate comparisons will be made. We illustrate the importance of these issues in an application of the so-called Practitioner Black-Scholes model to S&P 500 index options. Quelle devrait être la fonction de perte utilisée pour l'estimation et l'évaluation des modèles de valorisation des options? Plusieurs fonctions ont été suggérées, mais aucune norme ne s'est imposée. Dans ce travail, nous ne proposons pas une fonction en particulier, mais nous soutenons que la cohérence dans le choix des fonctions est cruciale. Premièrement, pour n'importe quel modèle donné, la fonction de perte utilisée dans l'estimation des paramètres et dans l'évaluation du modèle devrait être la même, sinon on obtient des estimations de paramètres sous-optimaux. Deuxièmement, lors de la comparaison des modèles, la fonction de perte utilisée pour l'estimation devrait être la même pour chaque modèle, autrement les comparaisons sont injustes. Nous illustrons l'importance de ces questions dans une application du modèle appelé Black-Scholes du praticien (PBS) aux options de l'indice S&P500.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cirano.qc.ca/files/publications/2003s-52.pdf
Download Restriction: no

Paper provided by CIRANO in its series CIRANO Working Papers with number 2003s-52.

as
in new window

Length: 37 pages
Date of creation: 01 Aug 2003
Date of revision:
Handle: RePEc:cir:cirwor:2003s-52
Contact details of provider: Postal: 2020 rue University, 25e étage, Montréal, Quéc, H3A 2A5
Phone: (514) 985-4000
Fax: (514) 985-4039
Web page: http://www.cirano.qc.ca/Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Hull, John & Suo, Wulin, 2002. "A Methodology for Assessing Model Risk and its Application to the Implied Volatility Function Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(02), pages 297-318, June.
  2. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  3. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
  4. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. " Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-49, December.
  5. Yacine Ait-Sahalia & Andrew W. Lo, 1995. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," NBER Working Papers 5351, National Bureau of Economic Research, Inc.
  6. Garcia, R. & Luger, R. & Renault, E., 2001. "Empirical Assessment of an Intertemporal option Pricing Model with Latent variables," Cahiers de recherche 2001-10, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  7. repec:fth:inseep:2000-56 is not listed on IDEAS
  8. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
  9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  10. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-43.
  11. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. " A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-89, July.
  12. Joshua Rosenberg & Robert F. Engle, 2000. "Empirical Pricing Kernels," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-014, New York University, Leonard N. Stern School of Business-.
  13. Rubinstein, Mark, 1994. " Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
  14. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1998. "Implied Volatility Functions: Empirical Tests," Journal of Finance, American Finance Association, vol. 53(6), pages 2059-2106, December.
  15. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous-Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, 06.
  16. Jacquier, Eric & Jarrow, Robert, 2000. "Bayesian analysis of contingent claim model error," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 145-180.
  17. Karolyi, G. Andrew, 1993. "A Bayesian Approach to Modeling Stock Return Volatility for Option Valuation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(04), pages 579-594, December.
  18. Garcia, Rene & Gencay, Ramazan, 2000. "Pricing and hedging derivative securities with neural networks and a homogeneity hint," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 93-115.
  19. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
  20. Brandt, Michael W. & Wu, Tao, 2002. "Cross-sectional tests of deterministic volatility functions," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 525-550, December.
  21. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(04), pages 419-438, December.
  22. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
  23. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 1-46 National Bureau of Economic Research, Inc.
  24. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
  25. Jin-Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2003s-52. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.