IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Option Prices under Bayesian Learning: Implied Volatility Dynamics and Predictive Densities

  • Guidolin, Massimo
  • Timmermann, Allan G

This Paper shows that many of the empirical biases of the Black and Scholes option pricing model can be explained by Bayesian learning effects. In the context of an equilibrium model where dividend news evolves on a binomial lattice with unknown but recursively updated probabilities, we derive closed-form pricing formulas for European options. Learning is found to generate asymmetric skews in the implied volatility surface and systematic patterns in the term structure of option prices. Data on S&P 500 index option prices is used to back out the parameters of the underlying learning process and to predict the evolution in the cross-section of option prices. The proposed model leads to lower out-of-sample forecast errors and smaller hedging errors than a variety of alternative option pricing models, including Black-Scholes and a GARCH model.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cepr.org/active/publications/discussion_papers/dp.php?dpno=3005
Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Paper provided by C.E.P.R. Discussion Papers in its series CEPR Discussion Papers with number 3005.

as
in new window

Length:
Date of creation: Oct 2001
Date of revision:
Handle: RePEc:cpr:ceprdp:3005
Contact details of provider: Postal: Centre for Economic Policy Research, 77 Bastwick Street, London EC1V 3PZ.
Phone: 44 - 20 - 7183 8801
Fax: 44 - 20 - 7183 8820

Order Information: Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  2. Stapleton, Richard C & Subrahmanyam, Marti G, 1984. " The Valuation of Options When Asset Returns Are Generated by a Binomial Process," Journal of Finance, American Finance Association, vol. 39(5), pages 1525-39, December.
  3. Rubinstein, Mark, 1994. " Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
  4. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
  5. Merton, Robert C., 1975. "Option pricing when underlying stock returns are discontinuous," Working papers 787-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  6. Andrew B. Abel, 1988. "Stock Prices Under Time-Varying Dividend Risk: An Exact Solution In An Infinite-Horizon General Equilibrium Model," NBER Working Papers 2621, National Bureau of Economic Research, Inc.
  7. Leland, Hayne E, 1985. " Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
  8. John Y. Campbell, 1996. "Consumption and the Stock Market: Interpreting International Experience," Harvard Institute of Economic Research Working Papers 1763, Harvard - Institute of Economic Research.
  9. Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, EconWPA.
  10. Sanjiv R. Das & Rangarajan K. Sundaram, 1998. "Of Smiles and Smirks: A Term-Structure Perspective," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-024, New York University, Leonard N. Stern School of Business-.
  11. Yacine Ait-Sahalia & Andrew W. Lo, 1995. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," NBER Working Papers 5351, National Bureau of Economic Research, Inc.
  12. Bossaerts, Peter, 1995. "The Econometrics of Learning in Financial Markets," Econometric Theory, Cambridge University Press, vol. 11(01), pages 151-189, February.
  13. Ball, Clifford A & Torous, Walter N, 1985. " On Jumps in Common Stock Prices and Their Impact on Call Option Pricing," Journal of Finance, American Finance Association, vol. 40(1), pages 155-73, March.
  14. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. " Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-32, December.
  15. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  16. Joshua V. Rosenberg & Robert F. Engle, 1997. "Option Hedging Using Empirical Pricing Kernels," NBER Working Papers 6222, National Bureau of Economic Research, Inc.
  17. Abel, Andrew B., 1999. "Risk premia and term premia in general equilibrium," Journal of Monetary Economics, Elsevier, vol. 43(1), pages 3-33, February.
  18. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-43.
  19. Jin-Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32.
  20. Amin, Kaushik I, 1993. " Jump Diffusion Option Valuation in Discrete Time," Journal of Finance, American Finance Association, vol. 48(5), pages 1833-63, December.
  21. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm65, Yale School of Management.
  22. He, Hua & Leland, Hayne, 1993. "On Equilibrium Asset Price Processes," Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 593-617.
  23. Rubinstein, Mark, 1985. " Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978," Journal of Finance, American Finance Association, vol. 40(2), pages 455-80, June.
  24. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
  25. Bick, Avi, 1990. " On Viable Diffusion Price Processes of the Market Portfolio," Journal of Finance, American Finance Association, vol. 45(2), pages 673-89, June.
  26. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
  27. Timmermann, Allan G, 1993. "How Learning in Financial Markets Generates Excess Volatility and Predictability in Stock Prices," The Quarterly Journal of Economics, MIT Press, vol. 108(4), pages 1135-45, November.
  28. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
  29. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
  30. Lucas, Robert E, Jr, 1978. "Asset Prices in an Exchange Economy," Econometrica, Econometric Society, vol. 46(6), pages 1429-45, November.
  31. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
  32. W. Schachermayer, 1994. "Martingale Measures For Discrete-Time Processes With Infinite Horizon," Mathematical Finance, Wiley Blackwell, vol. 4(1), pages 25-55.
  33. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1998. "Implied Volatility Functions: Empirical Tests," Journal of Finance, American Finance Association, vol. 53(6), pages 2059-2106, December.
  34. repec:cup:etheor:v:11:y:1995:i:1:p:151-89 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:3005. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

The email address of this maintainer does not seem to be valid anymore. Please ask to update the entry or send us the correct address

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.