IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v4y1994i1p25-55.html
   My bibliography  Save this article

Martingale Measures For Discrete‐Time Processes With Infinite Horizon

Author

Listed:
  • W. Schachermayer

Abstract

Let (St)tεI be an Rd‐valued adapted stochastic process on (Ω, ?, (?t)tεI, P). A basic problem occurring notably in the analysis of securities markets, is to decide whether there is a probability measure Q on ? equivalent to P such that (St)tεI is a martingale with respect to Q. It is known (see the fundamental papers of Harrison and Kreps 1979; Harrison and Pliska 1981; and Kreps 1981) that there is an intimate relation of this problem with the notions of “no arbitrage” and “no free lunch” in financial economics. We introduce the intermediate concept of “no free lunch with bounded risk.” This is a somewhat more precise version of the notion of “no free lunch.” It requires an absolute bound of the maximal loss occurring in the trading strategies considered in the definition of “no free lunch.” We give an argument as to why the condition of “no free lunch with bounded risk” should be satisfied by a reasonable model of the price process (St)tεI of a securities market. We can establish the equivalence of the condition of “no free lunch with bounded risk” with the existence of an equivalent martingale measure in the case when the index set I is discrete but (possibly) infinite. A similar theorem was recently obtained by Delbaen (1992) for continuous‐time processes with continuous paths. We can combine these two theorems to get a similar result for the continuous‐time case when the process (St)tεR+ is bounded and, roughly speaking, the jumps occur at predictable times. In the infinite horizon setting, the price process has to be “almost a martingale” in order to allow an equivalent martingale measure.

Suggested Citation

  • W. Schachermayer, 1994. "Martingale Measures For Discrete‐Time Processes With Infinite Horizon," Mathematical Finance, Wiley Blackwell, vol. 4(1), pages 25-55, January.
  • Handle: RePEc:bla:mathfi:v:4:y:1994:i:1:p:25-55
    DOI: 10.1111/j.1467-9965.1994.tb00048.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9965.1994.tb00048.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9965.1994.tb00048.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Norbert Hofmann & Eckhard Platen & Martin Schweizer, 1992. "Option Pricing Under Incompleteness and Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 2(3), pages 153-187, July.
    2. Schachermayer, W., 1992. "A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time," Insurance: Mathematics and Economics, Elsevier, vol. 11(4), pages 249-257, December.
    3. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    4. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    5. Kreps, David M., 1981. "Arbitrage and equilibrium in economies with infinitely many commodities," Journal of Mathematical Economics, Elsevier, vol. 8(1), pages 15-35, March.
    6. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    7. Freddy Delbaen, 1992. "Representing Martingale Measures When Asset Prices Are Continuous And Bounded," Mathematical Finance, Wiley Blackwell, vol. 2(2), pages 107-130, April.
    8. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    9. Duffie, Darrell & Huang, Chi-fu, 1986. "Multiperiod security markets with differential information : Martingales and resolution times," Journal of Mathematical Economics, Elsevier, vol. 15(3), pages 283-303, June.
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Schweizer, Martin, 1992. "Martingale densities for general asset prices," Journal of Mathematical Economics, Elsevier, vol. 21(4), pages 363-378.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:dau:papers:123456789/5374 is not listed on IDEAS
    2. A. Fiori Maccioni, 2011. "The risk neutral valuation paradox," Working Paper CRENoS 201112, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    3. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    4. Alessandro Fiori Maccioni, 2011. "Endogenous Bubbles in Derivatives Markets: The Risk Neutral Valuation Paradox," Papers 1106.5274, arXiv.org, revised Sep 2011.
    5. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    6. Walter Schachermayer, 1993. "A Counterexample to Several Problems In the Theory of Asset Pricing," Mathematical Finance, Wiley Blackwell, vol. 3(2), pages 217-229, April.
    7. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19, July-Dece.
    8. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2009, January-A.
    9. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    10. Keith A. Lewis, 2019. "A Simple Proof of the Fundamental Theorem of Asset Pricing," Papers 1912.01091, arXiv.org.
    11. Prigent, Jean-Luc & Renault, Olivier & Scaillet, Olivier, 2004. "Option pricing with discrete rebalancing," Journal of Empirical Finance, Elsevier, vol. 11(1), pages 133-161, January.
    12. Gerber, Hans U. & Shiu, Elias S. W., 1996. "Actuarial bridges to dynamic hedging and option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 18(3), pages 183-218, November.
    13. repec:dau:papers:123456789/5590 is not listed on IDEAS
    14. Matteo Burzoni & Marco Frittelli & Zhaoxu Hou & Marco Maggis & Jan Obłój, 2019. "Pointwise Arbitrage Pricing Theory in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1034-1057, August.
    15. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    16. Christa Cuchiero & Josef Teichmann, 2015. "A convergence result for the Emery topology and a variant of the proof of the fundamental theorem of asset pricing," Finance and Stochastics, Springer, vol. 19(4), pages 743-761, October.
    17. Friedrich Hubalek & Walter Schachermayer, 2021. "Convergence of optimal expected utility for a sequence of binomial models," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1315-1331, October.
    18. Gianluca Cassese, 2008. "Asset Pricing With No Exogenous Probability Measure," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 23-54, January.
    19. Marcelo F. Perillo, 2021. "Valuación de Títulos de Deuda Indexados al Comportamiento de un Índice Accionario: Un Modelo sin Riesgo de Crédito," CEMA Working Papers: Serie Documentos de Trabajo. 784, Universidad del CEMA.
    20. Timothy Johnson, 2015. "Reciprocity as a Foundation of Financial Economics," Journal of Business Ethics, Springer, vol. 131(1), pages 43-67, September.
    21. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    22. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:4:y:1994:i:1:p:25-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.