IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v4y1994i1p25-55.html
   My bibliography  Save this article

Martingale Measures For Discrete-Time Processes With Infinite Horizon

Author

Listed:
  • W. Schachermayer

Abstract

Let ("S t ") "tεI" be an R-super-d-valued adapted stochastic process on (Ω, , ( "t" ) "tεI" , "P"). A basic problem occurring notably in the analysis of securities markets, is to decide whether there is a probability measure "Q" on equivalent to "P" such that ("S t ") "tεI" is a martingale with respect to "Q." It is known (see the fundamental papers of Harrison and Kreps 1979; Harrison and Pliska 1981; and Kreps 1981) that there is an intimate relation of this problem with the notions of "no arbitrage" and "no free lunch" in financial economics. We introduce the intermediate concept of "no free lunch with bounded risk." This is a somewhat more precise version of the notion of "no free lunch." It requires an absolute bound of the maximal loss occurring in the trading strategies considered in the definition of "no free lunch." We give an argument as to why the condition of "no free lunch with bounded risk" should be satisfied by a reasonable model of the price process ("S t ") "tεI" of a securities market. We can establish the equivalence of the condition of "no free lunch with bounded risk" with the existence of an equivalent martingale measure in the case when the index set "I" is discrete but (possibly) infinite. A similar theorem was recently obtained by Delbaen (1992) for continuous-time processes with continuous paths. We can combine these two theorems to get a similar result for the continuous-time case when the process ("S t ") "t"εR+ is bounded and, roughly speaking, the jumps occur at predictable times. In the infinite horizon setting, the price process has to be "almost a martingale" in order to allow an equivalent martingale measure. Copyright 1994 Blackwell Publishers.

Suggested Citation

  • W. Schachermayer, 1994. "Martingale Measures For Discrete-Time Processes With Infinite Horizon," Mathematical Finance, Wiley Blackwell, vol. 4(1), pages 25-55.
  • Handle: RePEc:bla:mathfi:v:4:y:1994:i:1:p:25-55
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9965.1994.tb00048.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Norbert Hofmann & Eckhard Platen & Martin Schweizer, 1992. "Option Pricing Under Incompleteness and Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 2(3), pages 153-187.
    2. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    3. Schachermayer, W., 1992. "A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time," Insurance: Mathematics and Economics, Elsevier, vol. 11(4), pages 249-257, December.
    4. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    5. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    6. Kreps, David M., 1981. "Arbitrage and equilibrium in economies with infinitely many commodities," Journal of Mathematical Economics, Elsevier, vol. 8(1), pages 15-35, March.
    7. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    8. Freddy Delbaen, 1992. "Representing Martingale Measures When Asset Prices Are Continuous And Bounded," Mathematical Finance, Wiley Blackwell, vol. 2(2), pages 107-130.
    9. Schweizer, Martin, 1992. "Martingale densities for general asset prices," Journal of Mathematical Economics, Elsevier, vol. 21(4), pages 363-378.
    10. Duffie, Darrell & Huang, Chi-fu, 1986. "Multiperiod security markets with differential information : Martingales and resolution times," Journal of Mathematical Economics, Elsevier, vol. 15(3), pages 283-303, June.
    11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:4:y:1994:i:1:p:25-55. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery) or (Christopher F. Baum). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.