IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Arbitrage and control problems in finance: A presentation

  • Jouini, Elyes

The theory of asset pricing takes its roots in the Arrow-Debreu model (see,for instance, Debreu 1959, Chap. 7), the Black and Scholes (1973) formula,and the Cox and Ross (1976) linear pricing model. This theory and its link to arbitrage has been formalized in a general framework by Harrison and Kreps (1979), Harrison and Pliska (1981, 1983), and Du¢e and Huang (1986). In these models, security markets are assumed to be frictionless: securities can be sold short in unlimited amounts, the borrowing and lending rates are equal, and there is no transaction cost. The main result is that the price process of traded securities is arbitrage free if and only if there exists some equivalent probability measure that transforms it into a martingale, when normalized by the numeraire. Contingent claims can then be priced by taking the expected value of their (normalized) payo§ with respect to any equivalent martingale measure. If this value is unique, the claim is said to be priced by arbitrage and it can be perfectly hedged (i.e. duplicated) by dynamic trading. When the markets are dynamically complete, there is only one such a and any contingent claim is priced by arbitrage. The of each state of the world for this probability measure can be interpreted as the state price of the economy (the prices of $1 tomorrow in that state of the world) as well as the marginal utilities (for consumption in that state of the world) of rational agents maximizing their expected utility.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6VBY-42YFB5V-1/2/c13a797f4f5da52ba69a655c57d6068b
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Mathematical Economics.

Volume (Year): 35 (2001)
Issue (Month): 2 (April)
Pages: 167-183

as
in new window

Handle: RePEc:eee:mateco:v:35:y:2001:i:2:p:167-183
Contact details of provider: Web page: http://www.elsevier.com/locate/jmateco

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Araujo,A. & Monteiro,P.K., 1989. "General equilibrium with infinitely many goods: The case of seperable utilities," Discussion Paper Serie A 249, University of Bonn, Germany.
  2. Laurence Carassus & Elyès Jouini, 1998. "Investment and Arbitrage Opportunities with Short Sales Constraints," Mathematical Finance, Wiley Blackwell, vol. 8(3), pages 169-178.
  3. Elyès Jouini, 2001. "Arbitrage and investment opportunities," Finance and Stochastics, Springer, vol. 5(3), pages 305-325.
  4. Carassus, Laurence & Jouini, Elyes, 2000. "A discrete stochastic model for investment with an application to the transaction costs case," Journal of Mathematical Economics, Elsevier, vol. 33(1), pages 57-80, February.
  5. Y.M. Kabanov, 1999. "Hedging and liquidation under transaction costs in currency markets," Finance and Stochastics, Springer, vol. 3(2), pages 237-248.
  6. Duffie, Darrell & Zame, William, 1989. "The Consumption-Based Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 57(6), pages 1279-97, November.
  7. Carassus, Laurence & Jouini, Elyès, 2000. "A discrete stochastic model for investment with an application to the transaction costs case," Economics Papers from University Paris Dauphine 123456789/5595, Paris Dauphine University.
  8. Chiarolla, Maria B. & Haussmann, Ulrich G., 2001. "Equilibrium in a stochastic model with consumption, wages and investment," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 311-346, April.
  9. Cuoco, Domenico & Cvitanic, Jaksa, 1998. "Optimal consumption choices for a 'large' investor," Journal of Economic Dynamics and Control, Elsevier, vol. 22(3), pages 401-436, March.
  10. Jaksa Cvitanić & Ioannis Karatzas, 1996. "HEDGING AND PORTFOLIO OPTIMIZATION UNDER TRANSACTION COSTS: A MARTINGALE APPROACH-super-2," Mathematical Finance, Wiley Blackwell, vol. 6(2), pages 133-165.
  11. repec:fth:inseep:9514 is not listed on IDEAS
  12. repec:fth:inseep:9830 is not listed on IDEAS
  13. Elyès Jouini, 2003. "Market imperfections , equilibrium and arbitrage," Post-Print halshs-00167131, HAL.
  14. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-84, March.
  15. Dokuchaev, Nikolai & Yu Zhou, Xun, 2001. "Optimal investment strategies with bounded risks, general utilities, and goal achieving," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 289-309, April.
  16. R. C. Merton, 1970. "Optimum Consumption and Portfolio Rules in a Continuous-time Model," Working papers 58, Massachusetts Institute of Technology (MIT), Department of Economics.
  17. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
  18. Elyes Jouini & Clotilde Napp, 1999. "Continuous Time Equilibrium Pricing of Nonredundant Assets," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-008, New York University, Leonard N. Stern School of Business-.
  19. Hua He & Neil D. Pearson, 1991. "Consumption and Portfolio Policies With Incomplete Markets and Short-Sale Constraints: the Finite-Dimensional Case," Mathematical Finance, Wiley Blackwell, vol. 1(3), pages 1-10.
  20. Constantinides, George M, 1986. "Capital Market Equilibrium with Transaction Costs," Journal of Political Economy, University of Chicago Press, vol. 94(4), pages 842-62, August.
  21. repec:fth:inseep:9513 is not listed on IDEAS
  22. Elyès Jouini & Hédi Kallal, 1999. "Viability and Equilibrium in Securities Markets with Frictions," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 275-292.
  23. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  24. Bellamy, Nadine, 2001. "Wealth optimization in an incomplete market driven by a jump-diffusion process," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 259-287, April.
  25. Kabanov, Yu. M. & Stricker, Ch., 2001. "The Harrison-Pliska arbitrage pricing theorem under transaction costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 185-196, April.
  26. Cuoco, Domenico, 1997. "Optimal Consumption and Equilibrium Prices with Portfolio Constraints and Stochastic Income," Journal of Economic Theory, Elsevier, vol. 72(1), pages 33-73, January.
  27. Jouini, Elyès & Carassus, Laurence, 1998. "Investment and arbitrage opportunities with short sales constraints," Economics Papers from University Paris Dauphine 123456789/5604, Paris Dauphine University.
  28. Kallal, Hedi & Jouini, Elyès, 1995. "Martingales and arbitrage in securities markets with transaction costs," Economics Papers from University Paris Dauphine 123456789/5630, Paris Dauphine University.
  29. Kreps, David M., 1981. "Arbitrage and equilibrium in economies with infinitely many commodities," Journal of Mathematical Economics, Elsevier, vol. 8(1), pages 15-35, March.
  30. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
  31. Framstad, Nils Chr. & Oksendal, Bernt & Sulem, Agnes, 2001. "Optimal consumption and portfolio in a jump diffusion market with proportional transaction costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 233-257, April.
  32. Jouini, Elyès, 1997. "Market Imperfections , Equilibrium and Arbitrage," Economics Papers from University Paris Dauphine 123456789/1047, Paris Dauphine University.
  33. Jouini Elyes & Kallal Hedi, 1995. "Martingales and Arbitrage in Securities Markets with Transaction Costs," Journal of Economic Theory, Elsevier, vol. 66(1), pages 178-197, June.
  34. Jouini, Elyès & Kallal, Hedi, 1999. "Viability and equilibrium in securities markets with frictions," Economics Papers from University Paris Dauphine 123456789/5603, Paris Dauphine University.
  35. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-57, August.
  36. Dumas, Bernard & Luciano, Elisa, 1991. " An Exact Solution to a Dynamic Portfolio Choice Problem under Transactions Costs," Journal of Finance, American Finance Association, vol. 46(2), pages 577-95, June.
  37. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
  38. Freddy Delbaen, 1992. "Representing Martingale Measures When Asset Prices Are Continuous And Bounded," Mathematical Finance, Wiley Blackwell, vol. 2(2), pages 107-130.
  39. Araujo, A. & Monteiro, P. K., 1989. "Equilibrium without uniform conditions," Journal of Economic Theory, Elsevier, vol. 48(2), pages 416-427, August.
  40. W. Schachermayer, 1994. "Martingale Measures For Discrete-Time Processes With Infinite Horizon," Mathematical Finance, Wiley Blackwell, vol. 4(1), pages 25-55.
  41. Nicole El Karoui & Monique Jeanblanc-Picqué, 1998. "Optimization of consumption with labor income," Finance and Stochastics, Springer, vol. 2(4), pages 409-440.
  42. Cvitanic, Jaksa & Wang, Hui, 2001. "On optimal terminal wealth under transaction costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 223-231, April.
  43. Cox, John C. & Huang, Chi-fu, 1991. "A variational problem arising in financial economics," Journal of Mathematical Economics, Elsevier, vol. 20(5), pages 465-487.
  44. Duffie, J Darrell & Huang, Chi-fu, 1985. "Implementing Arrow-Debreu Equilibria by Continuous Trading of Few Long-lived Securities," Econometrica, Econometric Society, vol. 53(6), pages 1337-56, November.
  45. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
  46. Bewley, Truman F., 1972. "Existence of equilibria in economies with infinitely many commodities," Journal of Economic Theory, Elsevier, vol. 4(3), pages 514-540, June.
  47. Huang, Chi-fu, 1987. "An Intertemporal General Equilibrium Asset Pricing Model: The Case of Diffusion Information," Econometrica, Econometric Society, vol. 55(1), pages 117-42, January.
  48. Duffie, Darrell & Huang, Chi-fu, 1986. "Multiperiod security markets with differential information : Martingales and resolution times," Journal of Mathematical Economics, Elsevier, vol. 15(3), pages 283-303, June.
  49. Harrison, J. Michael & Pliska, Stanley R., 1983. "A stochastic calculus model of continuous trading: Complete markets," Stochastic Processes and their Applications, Elsevier, vol. 15(3), pages 313-316, August.
  50. Elyégs Jouini & Hédi Kallal, 1995. "Arbitrage In Securities Markets With Short-Sales Constraints," Mathematical Finance, Wiley Blackwell, vol. 5(3), pages 197-232.
  51. Lakner, Peter, 1995. "Utility maximization with partial information," Stochastic Processes and their Applications, Elsevier, vol. 56(2), pages 247-273, April.
  52. Knut K. Aase, 1992. "Dynamic Equilibrium and the Structure of Premiums in a Reinsurance Market," The Geneva Risk and Insurance Review, Palgrave Macmillan, vol. 17(2), pages 93-136, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:35:y:2001:i:2:p:167-183. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.