IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal


  • Jaksa Cvitanić
  • Ioannis Karatzas
Registered author(s):

    We derive a formula for the minimal initial wealth needed to hedge an arbitrary contingent claim in a continuous-time model with proportional transaction costs; the expression obtained can be interpreted as the supremum of expected discounted values of the claim, over all (pairs of) probability measures under which the "wealth process" is a supermartingale. Next, we prove the existence of an optimal solution to the portfolio optimization problem of maximizing utility from terminal wealth in the same model, we also characterize this solution via a transformation to a hedging problem: the optimal portfolio is the one that hedges the inverse of marginal utility evaluated at the shadow state-price density solving the corresponding dual problem, if such exists. We can then use the optimal shadow state-price density for pricing contingent claims in this market. the mathematical tools are those of continuous-time martingales, convex analysis, functional analysis, and duality theory. Copyright 1996 Blackwell Publishers.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Wiley Blackwell in its journal Mathematical Finance.

    Volume (Year): 6 (1996)
    Issue (Month): 2 ()
    Pages: 133-165

    in new window

    Handle: RePEc:bla:mathfi:v:6:y:1996:i:2:p:133-165
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:6:y:1996:i:2:p:133-165. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

    or (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.