IDEAS home Printed from
   My bibliography  Save this article

Utility maximization with partial information


  • Lakner, Peter


In the present paper we address two maximization problems: the maximization of expected total utility from consumption and the maximization of expected utility from terminal wealth. The price process of the available financial assets is assumed to satisfy a system of functional stochastic differential equations. The difference between this paper and the existing papers on the same subject is that here we require the consumption and investment processes to be adapted to the natural filtration of the price processes. This requirement means that the only available information for agents in this economy at a certain time are the prices of the financial assets up to that time. The underlying Brownian motion and the drift process in the system of equations for the asset prices are not directly observable. Particular details will be worked out for the "Bayesian" example, when the dispersion coefficient is a fixed invertible matrix and the drift vector is an Fo-measurable, unobserved random variable with known distribution.

Suggested Citation

  • Lakner, Peter, 1995. "Utility maximization with partial information," Stochastic Processes and their Applications, Elsevier, vol. 56(2), pages 247-273, April.
  • Handle: RePEc:eee:spapps:v:56:y:1995:i:2:p:247-273

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Duffie, Darrell & Zame, William, 1989. "The Consumption-Based Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 57(6), pages 1279-1297, November.
    2. Hua He & Neil D. Pearson, 1991. "Consumption and Portfolio Policies With Incomplete Markets and Short-Sale Constraints: the Finite-Dimensional Case," Mathematical Finance, Wiley Blackwell, vol. 1(3), pages 1-10.
    3. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    4. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-384, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Anton A. Shardin & Michaela Szolgyenyi, 2016. "Optimal Control of an Energy Storage Facility Under a Changing Economic Environment and Partial Information," Papers 1602.04662,, revised Apr 2016.
    2. Fontana, Claudio & Grbac, Zorana & Jeanblanc, Monique & Li, Qinghua, 2014. "Information, no-arbitrage and completeness for asset price models with a change point," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 3009-3030.
    3. Eckhard Platen & Wolfgang Runggaldier, 2007. "A Benchmark Approach to Portfolio Optimization under Partial Information," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(1), pages 25-43, March.
    4. Yao, Jing & Li, Duan, 2013. "Bounded rationality as a source of loss aversion and optimism: A study of psychological adaptation under incomplete information," Journal of Economic Dynamics and Control, Elsevier, vol. 37(1), pages 18-31.
    5. Oliver Janke, 2016. "Utility Maximization and Indifference Value under Risk and Information Constraints for a Market with a Change Point," Papers 1610.08644,
    6. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    7. Jianjun Miao, 2009. "Ambiguity, Risk and Portfolio Choice under Incomplete Information," Annals of Economics and Finance, Society for AEF, vol. 10(2), pages 257-279, November.
    8. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    9. Lakner, Peter, 1998. "Optimal trading strategy for an investor: the case of partial information," Stochastic Processes and their Applications, Elsevier, vol. 76(1), pages 77-97, August.
    10. Nikolai Dokuchaev, 2015. "Optimal portfolio with unobservable market parameters and certainty equivalence principle," Papers 1502.02352,
    11. Kristoffer Lindensjö, 2016. "Optimal investment and consumption under partial information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(1), pages 87-107, February.
    12. Décamps, Jean-Paul & Mariotti, Thomas & Villeneuve, Stéphane, 2000. "Investment Timing under Incomplete Information," IDEI Working Papers 115, Institut d'Économie Industrielle (IDEI), Toulouse, revised Apr 2004.
    13. Guidolin, Massimo & Timmermann, Allan, 2007. "Properties of equilibrium asset prices under alternative learning schemes," Journal of Economic Dynamics and Control, Elsevier, vol. 31(1), pages 161-217, January.
    14. Liang, Zhibin & Bayraktar, Erhan, 2014. "Optimal reinsurance and investment with unobservable claim size and intensity," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 156-166.
    15. Liang, Zongxia & Song, Min, 2015. "Time-consistent reinsurance and investment strategies for mean–variance insurer under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 66-76.
    16. repec:eee:apmaco:v:321:y:2018:i:c:p:577-592 is not listed on IDEAS
    17. repec:spr:compst:v:71:y:2010:i:2:p:371-399 is not listed on IDEAS
    18. Wolfgang Putschögl & Jörn Sass, 2008. "Optimal consumption and investment under partial information," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 31(2), pages 137-170, November.
    19. Thomas Lim & Marie-Claire Quenez, 2010. "Portfolio optimization in a default model under full/partial information," Papers 1003.6002,, revised Nov 2013.
    20. Tomas Björk & Mark Davis & Camilla Landén, 2010. "Optimal investment under partial information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(2), pages 371-399, April.
    21. repec:dau:papers:123456789/5590 is not listed on IDEAS
    22. Liang, Zhibin & Yuen, Kam Chuen & Guo, Junyi, 2011. "Optimal proportional reinsurance and investment in a stock market with Ornstein-Uhlenbeck process," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 207-215, September.
    23. Brendle, Simon, 2006. "Portfolio selection under incomplete information," Stochastic Processes and their Applications, Elsevier, vol. 116(5), pages 701-723, May.
    24. Jorn Sass & Dorothee Westphal & Ralf Wunderlich, 2016. "Expert Opinions and Logarithmic Utility Maximization for Multivariate Stock Returns with Gaussian Drift," Papers 1601.08155,, revised Mar 2016.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:56:y:1995:i:2:p:247-273. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.