IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v76y1998i1p77-97.html
   My bibliography  Save this article

Optimal trading strategy for an investor: the case of partial information

Author

Listed:
  • Lakner, Peter

Abstract

We shall address here the optimization problem of an investor who wants to maximize the expected utility from terminal wealth. The novelty of this paper is that the drift process and the driving Brownian motion appearing in the stochastic differential equation for the security prices are not assumed to be observable for investors in the market. Investors observe security prices and interest rates only. The drift process will be modelled by a Gaussian process, which in a special case becomes a multi-dimensional mean-reverting Ornstein-Uhlenbeck process. The main result of the paper is an explicit representation for the optimal trading strategy for a wide range of utility functions.

Suggested Citation

  • Lakner, Peter, 1998. "Optimal trading strategy for an investor: the case of partial information," Stochastic Processes and their Applications, Elsevier, vol. 76(1), pages 77-97, August.
  • Handle: RePEc:eee:spapps:v:76:y:1998:i:1:p:77-97
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(98)00032-5
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duffie, Darrell & Zame, William, 1989. "The Consumption-Based Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 57(6), pages 1279-1297, November.
    2. Dothan, Michael U & Feldman, David, 1986. " Equilibrium Interest Rates and Multiperiod Bonds in a Partially Observable Economy," Journal of Finance, American Finance Association, vol. 41(2), pages 369-382, June.
    3. Hua He & Neil D. Pearson, 1991. "Consumption and Portfolio Policies With Incomplete Markets and Short-Sale Constraints: the Finite-Dimensional Case," Mathematical Finance, Wiley Blackwell, vol. 1(3), pages 1-10.
    4. Detemple, Jerome B., 1991. "Further results on asset pricing with incomplete information," Journal of Economic Dynamics and Control, Elsevier, vol. 15(3), pages 425-453, July.
    5. Lakner, Peter, 1995. "Utility maximization with partial information," Stochastic Processes and their Applications, Elsevier, vol. 56(2), pages 247-273, April.
    6. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    7. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-384, March.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:76:y:1998:i:1:p:77-97. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.