IDEAS home Printed from
   My bibliography  Save this paper

Dynamic Equilibrium with Liquidity Constraints


  • Jérôme B. Detemple
  • Angel Serrat


We consider an intertemporal economy with liquidity constrained and unconstrained individuals. A liquidity constraint prevents marketability of future income and thus endogenously generates market incompleteness. In contrast with the existing literature on portfolio constraints, our liquidity constraints arise naturally whenever agents may default and have a finite horizon. Liquidity constrained individuals optimally (i) postpone consumption in early age and (ii) experience permanent consumption increases whenever the constraint binds. The equilibrium interest rate and asset prices are characterized under very general assumptions on preferences and endowment processes. In the presence of liquidity constraints, the cumulative interest return is reduced. In addition, the CCAPM holds, even when the basic market structure is incomplete. With homogeneous relative risk aversion market incompleteness reinforces the effect of liquidity constraints and further reduces the riskless return. However, we show that neither incompleteness nor liquidity constraints can explain the empirical magnitude of the Sharpe ratio for admissible levels of risk aversion, independently of preferences and endowment assumptions. Additional contributions of the paper include (i) a new characterization of the consumption-portfolio problem of constrained individuals leading to an explicit solution, (ii) a constructive approach to the determination of equilibrium, and (iii) a numerical procedure to handle the forward-backward path-dependent computational problem arising with a liquidity constraint. Cet article examine une économie intertemporelle avec contraintes de liquidité. Celles-ci empêchent la monétisation des revenus futurs et génèrent une incomplétude endogène des marchés financiers. En contraste avec la littérature récente sur les contraintes d'investissement, nos contraintes de liquidité émergent naturellement lorsque les agents peuvent déclarer faillite et ont un horizon fini. Un individu, dont la contrainte de liquidité sature, decide optimalement (i) de déférer sa consommation en période de jeunesse,0501s (ii) de l'augmenter lorsque la contrainte est active. Le taux d'intérêt et les prix des actifs financiers d'équilibre sont caractérisés sous des conditions générales sur les préférences et les dotations. En présence de contraintes de liquidité le rendement de l'actif non risqué décroît. De plus le CAPM par rapport à la consommation est valide, même lorsque la structure de base du marché est incomplète. Lorsque l'aversion relative par rapport au risque est homogène et constante l'incomplétude du marché renforce l'effet des contraintes de liquidité et réduit encore davantage le rendement non risqué. Cependant, ni la contrainte d'incomplétude, ni celles de liquidité ne nous permettent d'expliquer le niveau empirique du ratio de Sharpe pour des valeurs raisonables du taux d'aversion au risque. D'autres contributions de cet article comprennent (i) une caractérisation nouvelle du problème de consommation-portefeuille d'un individu sous contrainte conduisant a une solution explicite, (ii) une approche constructive de détermination de l'équilibre, et (iii) une procédure numérique qui nous permet d'aborder les problèmes de calcul qui se posent dans ce contexte.

Suggested Citation

  • Jérôme B. Detemple & Angel Serrat, 1998. "Dynamic Equilibrium with Liquidity Constraints," CIRANO Working Papers 98s-41, CIRANO.
  • Handle: RePEc:cir:cirwor:98s-41

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Mehra, Rajnish & Prescott, Edward C., 1985. "The equity premium: A puzzle," Journal of Monetary Economics, Elsevier, vol. 15(2), pages 145-161, March.
    2. Constantinides, George M & Duffie, Darrell, 1996. "Asset Pricing with Heterogeneous Consumers," Journal of Political Economy, University of Chicago Press, vol. 104(2), pages 219-240, April.
    3. Breeden, Douglas T., 1979. "An intertemporal asset pricing model with stochastic consumption and investment opportunities," Journal of Financial Economics, Elsevier, vol. 7(3), pages 265-296, September.
    4. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    5. Darrell Duffie & Chi-Fu Huang, 2005. "Implementing Arrow-Debreu Equilibria By Continuous Trading Of Few Long-Lived Securities," World Scientific Book Chapters,in: Theory Of Valuation, chapter 4, pages 97-127 World Scientific Publishing Co. Pte. Ltd..
    6. Duffie, Darrell & Zame, William, 1989. "The Consumption-Based Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 57(6), pages 1279-1297, November.
    7. Dybvig, Philip H., 1983. "An explicit bound on individual assets' deviations from APT pricing in a finite economy," Journal of Financial Economics, Elsevier, vol. 12(4), pages 483-496, December.
    8. Süleyman Basak & Domenico Cuoco, "undated". "An Equilibrium Model with Restricted Stock Market Participation (Reprint 066)," Rodney L. White Center for Financial Research Working Papers 1-97, Wharton School Rodney L. White Center for Financial Research.
    9. Deaton, Angus, 1991. "Saving and Liquidity Constraints," Econometrica, Econometric Society, vol. 59(5), pages 1221-1248, September.
    10. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    11. Lucas, Robert E, Jr, 1978. "Asset Prices in an Exchange Economy," Econometrica, Econometric Society, vol. 46(6), pages 1429-1445, November.
    12. Weil, Philippe, 1992. "Equilibrium asset prices with undiversifiable labor income risk," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 769-790.
    13. Hua He & Neil D. Pearson, 1991. "Consumption and Portfolio Policies With Incomplete Markets and Short-Sale Constraints: the Finite-Dimensional Case," Mathematical Finance, Wiley Blackwell, vol. 1(3), pages 1-10.
    14. George M. Constantinides & John B. Donaldson & Rajnish Mehra, 2002. "Junior Can't Borrow: A New Perspective on the Equity Premium Puzzle," The Quarterly Journal of Economics, Oxford University Press, vol. 117(1), pages 269-296.
    15. Fernando Alvarez & Urban J. Jermann, 1998. "Asset Pricing when Risk Sharing is Limited by Default," NBER Working Papers 6476, National Bureau of Economic Research, Inc.
    16. Timothy J. Kehoe & David K. Levine, 1993. "Debt-Constrained Asset Markets," Review of Economic Studies, Oxford University Press, vol. 60(4), pages 865-888.
    17. Constantinides, George M, 1982. "Intertemporal Asset Pricing with Heterogeneous Consumers and without Demand Aggregation," The Journal of Business, University of Chicago Press, vol. 55(2), pages 253-267, April.
    18. Cox, John C. & Huang, Chi-fu, 1991. "A variational problem arising in financial economics," Journal of Mathematical Economics, Elsevier, vol. 20(5), pages 465-487.
    19. Ioannis Karatzas & John P. Lehoczky & Steven E. Shreve, 1991. "Equilibrium Models With Singular Asset Prices," Mathematical Finance, Wiley Blackwell, vol. 1(3), pages 11-29.
    20. Scheinkman, Jose A & Weiss, Laurence, 1986. "Borrowing Constraints and Aggregate Economic Activity," Econometrica, Econometric Society, vol. 54(1), pages 23-45, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Basak, Suleyman & Pavlova, Anna, 2002. "A Dynamic Model with Import Quota Constraints," CEPR Discussion Papers 3414, C.E.P.R. Discussion Papers.
    2. Paul Ehling, 2004. "Consumption, Portfolio Policies and Dynamic Equilibrium in the Presence of Preference for Ownership," Econometric Society 2004 North American Winter Meetings 311, Econometric Society.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:98s-41. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.